Matches in SemOpenAlex for { <https://semopenalex.org/work/W4239010269> ?p ?o ?g. }
- W4239010269 abstract "<sec> <title>BACKGROUND</title> The rapid growth of the biomedical literature makes identifying strong evidence a time-consuming task. Applying machine learning to the process could be a viable solution that limits effort while maintaining accuracy. </sec> <sec> <title>OBJECTIVE</title> The goal of the research was to summarize the nature and comparative performance of machine learning approaches that have been applied to retrieve high-quality evidence for clinical consideration from the biomedical literature. </sec> <sec> <title>METHODS</title> We conducted a systematic review of studies that applied machine learning techniques to identify high-quality clinical articles in the biomedical literature. Multiple databases were searched to July 2020. Extracted data focused on the applied machine learning model, steps in the development of the models, and model performance. </sec> <sec> <title>RESULTS</title> From 3918 retrieved studies, 10 met our inclusion criteria. All followed a supervised machine learning approach and applied, from a limited range of options, a high-quality standard for the training of their model. The results show that machine learning can achieve a sensitivity of 95% while maintaining a high precision of 86%. </sec> <sec> <title>CONCLUSIONS</title> Machine learning approaches perform well in retrieving high-quality clinical studies. Performance may improve by applying more sophisticated approaches such as active learning and unsupervised machine learning approaches. </sec>" @default.
- W4239010269 created "2022-05-12" @default.
- W4239010269 creator A5003516378 @default.
- W4239010269 creator A5010252378 @default.
- W4239010269 creator A5018454934 @default.
- W4239010269 creator A5018887038 @default.
- W4239010269 creator A5022089970 @default.
- W4239010269 creator A5024942469 @default.
- W4239010269 creator A5044123410 @default.
- W4239010269 creator A5045344606 @default.
- W4239010269 date "2021-05-13" @default.
- W4239010269 modified "2023-09-25" @default.
- W4239010269 title "Machine Learning Approaches to Retrieve High-Quality, Clinically Relevant Evidence From the Biomedical Literature: Systematic Review (Preprint)" @default.
- W4239010269 cites W1573942470 @default.
- W4239010269 cites W1603122320 @default.
- W4239010269 cites W1779982606 @default.
- W4239010269 cites W1967935259 @default.
- W4239010269 cites W1999318832 @default.
- W4239010269 cites W2000544357 @default.
- W4239010269 cites W2028211029 @default.
- W4239010269 cites W2035792132 @default.
- W4239010269 cites W2041017010 @default.
- W4239010269 cites W2043566294 @default.
- W4239010269 cites W2062908157 @default.
- W4239010269 cites W2063524826 @default.
- W4239010269 cites W2076535917 @default.
- W4239010269 cites W2082631710 @default.
- W4239010269 cites W208711272 @default.
- W4239010269 cites W2100053037 @default.
- W4239010269 cites W2108528416 @default.
- W4239010269 cites W2132755184 @default.
- W4239010269 cites W2135536555 @default.
- W4239010269 cites W2147469877 @default.
- W4239010269 cites W2154703852 @default.
- W4239010269 cites W2322955240 @default.
- W4239010269 cites W2346750198 @default.
- W4239010269 cites W2398877337 @default.
- W4239010269 cites W2518818175 @default.
- W4239010269 cites W2560692704 @default.
- W4239010269 cites W2604568423 @default.
- W4239010269 cites W2737321227 @default.
- W4239010269 cites W2740680318 @default.
- W4239010269 cites W2750268731 @default.
- W4239010269 cites W2789894922 @default.
- W4239010269 cites W2801170057 @default.
- W4239010269 cites W2801856446 @default.
- W4239010269 cites W2807522649 @default.
- W4239010269 cites W2811054841 @default.
- W4239010269 cites W286875401 @default.
- W4239010269 cites W2901401634 @default.
- W4239010269 cites W2906178244 @default.
- W4239010269 cites W2906246062 @default.
- W4239010269 cites W2921763762 @default.
- W4239010269 cites W2985804587 @default.
- W4239010269 cites W2994586973 @default.
- W4239010269 cites W2999550106 @default.
- W4239010269 cites W3014512586 @default.
- W4239010269 cites W3023743883 @default.
- W4239010269 cites W3030878622 @default.
- W4239010269 cites W3047250449 @default.
- W4239010269 cites W3137245688 @default.
- W4239010269 cites W4236476849 @default.
- W4239010269 cites W4296263179 @default.
- W4239010269 cites W54464883 @default.
- W4239010269 doi "https://doi.org/10.2196/preprints.30401" @default.
- W4239010269 hasPublicationYear "2021" @default.
- W4239010269 type Work @default.
- W4239010269 citedByCount "1" @default.
- W4239010269 countsByYear W42390102692022 @default.
- W4239010269 crossrefType "posted-content" @default.
- W4239010269 hasAuthorship W4239010269A5003516378 @default.
- W4239010269 hasAuthorship W4239010269A5010252378 @default.
- W4239010269 hasAuthorship W4239010269A5018454934 @default.
- W4239010269 hasAuthorship W4239010269A5018887038 @default.
- W4239010269 hasAuthorship W4239010269A5022089970 @default.
- W4239010269 hasAuthorship W4239010269A5024942469 @default.
- W4239010269 hasAuthorship W4239010269A5044123410 @default.
- W4239010269 hasAuthorship W4239010269A5045344606 @default.
- W4239010269 hasBestOaLocation W42390102692 @default.
- W4239010269 hasConcept C111472728 @default.
- W4239010269 hasConcept C119857082 @default.
- W4239010269 hasConcept C136764020 @default.
- W4239010269 hasConcept C138885662 @default.
- W4239010269 hasConcept C154945302 @default.
- W4239010269 hasConcept C17744445 @default.
- W4239010269 hasConcept C189708586 @default.
- W4239010269 hasConcept C199539241 @default.
- W4239010269 hasConcept C2779473830 @default.
- W4239010269 hasConcept C2779530757 @default.
- W4239010269 hasConcept C41008148 @default.
- W4239010269 hasConcept C43169469 @default.
- W4239010269 hasConceptScore W4239010269C111472728 @default.
- W4239010269 hasConceptScore W4239010269C119857082 @default.
- W4239010269 hasConceptScore W4239010269C136764020 @default.
- W4239010269 hasConceptScore W4239010269C138885662 @default.
- W4239010269 hasConceptScore W4239010269C154945302 @default.
- W4239010269 hasConceptScore W4239010269C17744445 @default.
- W4239010269 hasConceptScore W4239010269C189708586 @default.
- W4239010269 hasConceptScore W4239010269C199539241 @default.
- W4239010269 hasConceptScore W4239010269C2779473830 @default.