Matches in SemOpenAlex for { <https://semopenalex.org/work/W4239031199> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4239031199 abstract "The effective calculability of number-theoretic functions such as addition and multiplication has always been recognized, and for that judgment a rigorous notion of ‘computable function’ is not required. A sharp mathematical concept was defined only in the twentieth century, when issues including the decision problem for predicate logic required a precise delimitation of functions that can be viewed as effectively calculable. Predicate logic emerged from Frege’s fundamental ‘Begriffsschrift’ (1879) as an expressive formal language and was described with mathematical precision by Hilbert in lectures given during the winter of 1917–18. The logical calculus Frege had also developed allowed proofs to proceed as computations in accordance with a fixed set of rules; in principle, according to Gödel, the rules could be applied ‘by someone who knew nothing about mathematics, or by a machine’. Hilbert grasped the potential of this mechanical aspect and formulated the decision problem for predicate logic as follows: ‘The Entscheidungsproblem [decision problem] is solved if one knows a procedure that permits the decision concerning the validity, respectively, satisfiability of a given logical expression by a finite number of operations.’ Some, for example, von Neumann (1927), believed that the inherent freedom of mathematical thought provided a sufficient reason to expect a negative solution to the problem. But how could a proof of undecidability be given? The unsolvability results of other mathematical problems had always been established relative to a determinate class of admissible operations, for example, the impossibility of doubling the cube relative to ruler and compass constructions. A negative solution to the decision problem obviously required the characterization of ‘effectively calculable functions’. For two other important issues a characterization of that informal notion was also needed, namely, the general formulation of the incompleteness theorems and the effective unsolvability of mathematical problems (for example, of Hilbert’s tenth problem). The first task of computability theory was thus to answer the question ‘What is a precise notion of effectively calculable function?’. Many different answers invariably characterized the same class of number-theoretic functions: the partial recursive ones. Today recursiveness or, equivalently, Turing computability is considered to be the precise mathematical counterpart to ‘effective calculability’. Relative to these notions undecidability results have been established, in particular, the undecidability of the decision problem for predicate logic. The notions are idealized in the sense that no time or space limitations are imposed on the calculations; the concept of ‘feasibility’ is crucial in computer science when trying to capture the subclass of recursive functions whose values can actually be determined." @default.
- W4239031199 created "2022-05-12" @default.
- W4239031199 creator A5023409888 @default.
- W4239031199 creator A5069739656 @default.
- W4239031199 date "2018-09-11" @default.
- W4239031199 modified "2023-09-25" @default.
- W4239031199 title "Computability theory" @default.
- W4239031199 doi "https://doi.org/10.4324/9780415249126-y001-1" @default.
- W4239031199 hasPublicationYear "2018" @default.
- W4239031199 type Work @default.
- W4239031199 citedByCount "0" @default.
- W4239031199 crossrefType "book-chapter" @default.
- W4239031199 hasAuthorship W4239031199A5023409888 @default.
- W4239031199 hasAuthorship W4239031199A5069739656 @default.
- W4239031199 hasConcept C108710211 @default.
- W4239031199 hasConcept C11413529 @default.
- W4239031199 hasConcept C115988155 @default.
- W4239031199 hasConcept C118615104 @default.
- W4239031199 hasConcept C136119220 @default.
- W4239031199 hasConcept C140146324 @default.
- W4239031199 hasConcept C145420912 @default.
- W4239031199 hasConcept C17744445 @default.
- W4239031199 hasConcept C183140480 @default.
- W4239031199 hasConcept C199343813 @default.
- W4239031199 hasConcept C199360897 @default.
- W4239031199 hasConcept C199539241 @default.
- W4239031199 hasConcept C202444582 @default.
- W4239031199 hasConcept C2524010 @default.
- W4239031199 hasConcept C2776261394 @default.
- W4239031199 hasConcept C2777686260 @default.
- W4239031199 hasConcept C33923547 @default.
- W4239031199 hasConcept C41008148 @default.
- W4239031199 hasConcept C47884741 @default.
- W4239031199 hasConcept C71924100 @default.
- W4239031199 hasConcept C80469333 @default.
- W4239031199 hasConceptScore W4239031199C108710211 @default.
- W4239031199 hasConceptScore W4239031199C11413529 @default.
- W4239031199 hasConceptScore W4239031199C115988155 @default.
- W4239031199 hasConceptScore W4239031199C118615104 @default.
- W4239031199 hasConceptScore W4239031199C136119220 @default.
- W4239031199 hasConceptScore W4239031199C140146324 @default.
- W4239031199 hasConceptScore W4239031199C145420912 @default.
- W4239031199 hasConceptScore W4239031199C17744445 @default.
- W4239031199 hasConceptScore W4239031199C183140480 @default.
- W4239031199 hasConceptScore W4239031199C199343813 @default.
- W4239031199 hasConceptScore W4239031199C199360897 @default.
- W4239031199 hasConceptScore W4239031199C199539241 @default.
- W4239031199 hasConceptScore W4239031199C202444582 @default.
- W4239031199 hasConceptScore W4239031199C2524010 @default.
- W4239031199 hasConceptScore W4239031199C2776261394 @default.
- W4239031199 hasConceptScore W4239031199C2777686260 @default.
- W4239031199 hasConceptScore W4239031199C33923547 @default.
- W4239031199 hasConceptScore W4239031199C41008148 @default.
- W4239031199 hasConceptScore W4239031199C47884741 @default.
- W4239031199 hasConceptScore W4239031199C71924100 @default.
- W4239031199 hasConceptScore W4239031199C80469333 @default.
- W4239031199 hasLocation W42390311991 @default.
- W4239031199 hasOpenAccess W4239031199 @default.
- W4239031199 hasPrimaryLocation W42390311991 @default.
- W4239031199 hasRelatedWork W1567156820 @default.
- W4239031199 hasRelatedWork W2016878592 @default.
- W4239031199 hasRelatedWork W2033265717 @default.
- W4239031199 hasRelatedWork W2041010580 @default.
- W4239031199 hasRelatedWork W2131525765 @default.
- W4239031199 hasRelatedWork W2223274963 @default.
- W4239031199 hasRelatedWork W2257080944 @default.
- W4239031199 hasRelatedWork W2293933693 @default.
- W4239031199 hasRelatedWork W4239031199 @default.
- W4239031199 hasRelatedWork W573211813 @default.
- W4239031199 isParatext "false" @default.
- W4239031199 isRetracted "false" @default.
- W4239031199 workType "book-chapter" @default.