Matches in SemOpenAlex for { <https://semopenalex.org/work/W4239333681> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4239333681 abstract "<sec> <title>BACKGROUND</title> Sickle cell disease (SCD) is an inherited red blood cell disorder affecting millions worldwide that results in many potential medical complications throughout the lifecourse. The hallmark of SCD is pain. Many patients experience daily chronic pain, as well as intermittent, unpredictable acute vaso-occlusive painful episodes called pain crises. These pain crises often require acute medical care and can lead to a day hospital or emergency department (ED) visit, or even a hospitalization [1]. Over one in four patients seen for acute pain in the ED or day hospital are admitted, with efforts focused on palliative pain control and hydration for management [2]. However, mitigating pain crises is challenging for both the patients and their providers, given the perceived unpredictability and subjective nature of pain. </sec> <sec> <title>OBJECTIVE</title> We aim to use physiologic changes during an acute pain crisis to objectively measure and predict pain scores. </sec> <sec> <title>METHODS</title> For this pilot study, we enrolled 20 adult patients presenting to the Adult Day Hospital with acute pain. Before beginning pain treatment, each participant was given a wearable device (Microsoft Band 2) that collected physiologic measurements, and pain scores were recorded from our mobile app Technology Recordings to Understand Pain (TRU-Pain). We used this data to describe changes in pain scores and physiologic measures. Then, we constructed regression and classification machine-learning models to predict pain scores collected from mobile applications with features extracted from wearable signals. </sec> <sec> <title>RESULTS</title> Patients were monitored for an average of 3.79 hours (SD: +/- 2.23 hours) with an average of 5,826 (SD: +/- 2,667) objective data values per patient. As expected, we found that pain scores and heart rate decreased for most patients during the course of hospitalization. Using the wearable data, we were able to create a regression model to predict subjective pain scores with a root mean error of 1.430 and correlation between observations and predictions of 0.706. Furthermore, we verified the hypothesis that the regression model outperformed the classification model by comparing the performances of the Support Vector Machines and the Support Vector Machines for Regression. </sec> <sec> <title>CONCLUSIONS</title> The combination of the TRU-Pain app and wearable device provided an efficient and cost-effective method for collecting objective, physiological markers of an acute pain crisis and change in pain intensity for adult patients with SCD. Applying machine learning in this small and highly imbalanced dataset, demonstrated the potential for objectively measuring pain in SCD. </sec>" @default.
- W4239333681 created "2022-05-12" @default.
- W4239333681 creator A5016245996 @default.
- W4239333681 creator A5073601018 @default.
- W4239333681 creator A5074199492 @default.
- W4239333681 creator A5078849782 @default.
- W4239333681 creator A5079652359 @default.
- W4239333681 creator A5083173795 @default.
- W4239333681 creator A5084532918 @default.
- W4239333681 creator A5086653394 @default.
- W4239333681 date "2019-02-09" @default.
- W4239333681 modified "2023-09-29" @default.
- W4239333681 title "Use of mHealth Apps and Wearable Technology to Assess Changes and Predict Pain During Treatment of Acute Pain in Sickle Cell Disease (Preprint)" @default.
- W4239333681 cites W1563549564 @default.
- W4239333681 cites W1915129189 @default.
- W4239333681 cites W1964357740 @default.
- W4239333681 cites W1981403169 @default.
- W4239333681 cites W1999610083 @default.
- W4239333681 cites W2014587614 @default.
- W4239333681 cites W2017337590 @default.
- W4239333681 cites W2024188336 @default.
- W4239333681 cites W2051330265 @default.
- W4239333681 cites W2063931664 @default.
- W4239333681 cites W2082226298 @default.
- W4239333681 cites W2094125744 @default.
- W4239333681 cites W2122120045 @default.
- W4239333681 cites W2129003580 @default.
- W4239333681 cites W2142274882 @default.
- W4239333681 cites W2149374305 @default.
- W4239333681 cites W2343412983 @default.
- W4239333681 cites W2522681375 @default.
- W4239333681 cites W2534858547 @default.
- W4239333681 cites W2604159311 @default.
- W4239333681 cites W2618581983 @default.
- W4239333681 cites W2620652265 @default.
- W4239333681 cites W2742054655 @default.
- W4239333681 cites W2770346636 @default.
- W4239333681 cites W2774270623 @default.
- W4239333681 cites W2786766088 @default.
- W4239333681 cites W2798041585 @default.
- W4239333681 cites W2804079537 @default.
- W4239333681 cites W2804652351 @default.
- W4239333681 cites W2895421794 @default.
- W4239333681 cites W2896362348 @default.
- W4239333681 cites W2897973573 @default.
- W4239333681 doi "https://doi.org/10.2196/preprints.13671" @default.
- W4239333681 hasPublicationYear "2019" @default.
- W4239333681 type Work @default.
- W4239333681 citedByCount "0" @default.
- W4239333681 crossrefType "posted-content" @default.
- W4239333681 hasAuthorship W4239333681A5016245996 @default.
- W4239333681 hasAuthorship W4239333681A5073601018 @default.
- W4239333681 hasAuthorship W4239333681A5074199492 @default.
- W4239333681 hasAuthorship W4239333681A5078849782 @default.
- W4239333681 hasAuthorship W4239333681A5079652359 @default.
- W4239333681 hasAuthorship W4239333681A5083173795 @default.
- W4239333681 hasAuthorship W4239333681A5084532918 @default.
- W4239333681 hasAuthorship W4239333681A5086653394 @default.
- W4239333681 hasBestOaLocation W42393336812 @default.
- W4239333681 hasConcept C118552586 @default.
- W4239333681 hasConcept C126322002 @default.
- W4239333681 hasConcept C1862650 @default.
- W4239333681 hasConcept C27415008 @default.
- W4239333681 hasConcept C2779134260 @default.
- W4239333681 hasConcept C2779363104 @default.
- W4239333681 hasConcept C2780724011 @default.
- W4239333681 hasConcept C2993997175 @default.
- W4239333681 hasConcept C42219234 @default.
- W4239333681 hasConcept C71924100 @default.
- W4239333681 hasConceptScore W4239333681C118552586 @default.
- W4239333681 hasConceptScore W4239333681C126322002 @default.
- W4239333681 hasConceptScore W4239333681C1862650 @default.
- W4239333681 hasConceptScore W4239333681C27415008 @default.
- W4239333681 hasConceptScore W4239333681C2779134260 @default.
- W4239333681 hasConceptScore W4239333681C2779363104 @default.
- W4239333681 hasConceptScore W4239333681C2780724011 @default.
- W4239333681 hasConceptScore W4239333681C2993997175 @default.
- W4239333681 hasConceptScore W4239333681C42219234 @default.
- W4239333681 hasConceptScore W4239333681C71924100 @default.
- W4239333681 hasLocation W42393336811 @default.
- W4239333681 hasLocation W42393336812 @default.
- W4239333681 hasOpenAccess W4239333681 @default.
- W4239333681 hasPrimaryLocation W42393336811 @default.
- W4239333681 hasRelatedWork W1533727747 @default.
- W4239333681 hasRelatedWork W1991383915 @default.
- W4239333681 hasRelatedWork W2035000435 @default.
- W4239333681 hasRelatedWork W2037840846 @default.
- W4239333681 hasRelatedWork W2204586295 @default.
- W4239333681 hasRelatedWork W2315028266 @default.
- W4239333681 hasRelatedWork W2531506042 @default.
- W4239333681 hasRelatedWork W2795066186 @default.
- W4239333681 hasRelatedWork W2992931407 @default.
- W4239333681 hasRelatedWork W3210673021 @default.
- W4239333681 isParatext "false" @default.
- W4239333681 isRetracted "false" @default.
- W4239333681 workType "article" @default.