Matches in SemOpenAlex for { <https://semopenalex.org/work/W4239468669> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4239468669 abstract "<sec> <title>BACKGROUND</title> Happiness is considered as an important indicator of users’ mental and physical health. Fostering happiness has gained increasing public attention as one of the ways to decrease health costs in the long run. Understanding what makes users feel happy may help policy makers develop policies and methods that steer users towards behaviors identified to promote happiness. </sec> <sec> <title>OBJECTIVE</title> This paper aimed to investigate the use of deep learning methods to analyze happy moments and compare them with the traditional machine learning methods, which may provide a mechanism to accurately classify happy moments and help understand why users feel happy. </sec> <sec> <title>METHODS</title> A crowdsourced corpus of happy moments, HappyDB, was used. The dataset contained 14,125 posts with category labels that described sources and reasons for happy feelings: Achievement, Affection, Bonding, Enjoy the moment, Leisure, Nature and Exercise. We compared the performance of deep learning methods such as the convolutional neural network (CNN), bidirectional long-short term memory (Bi-LSTM), and attention Bi-LSTM with that of the traditional machine learning methods including logistic regression, SVM, and naïve Bayes. Standard measures including precision, recall, and F1 were adopted for each category. Macro-precision, macro-recall, and macro-F1 were used to evaluate the overall performance of the models. </sec> <sec> <title>RESULTS</title> We found that CNN achieved the best performance on macro-precision, macro-recall, and macro-F1, with values of 80.8, 79.3, and 80.0, respectively. Among the traditional machine learning methods, logistic regression performed the best, with macro-precision of 80.6, macro-recall of 71.1, and macro-F1 of 75.5. A detailed comparison of CNN and logistic regression on each category showed that CNN was able to improve F1 score for all categories. Specifically, F1 improved by at least 1.8% on the Bonding category and up to 11.3% on Nature. Performance improvements mainly depended on significant improvements on recall, especially for minor categories. For example, the recall of CNN was 80.9 and 70.9 for Nature and Exercise, which was an improvement of 28.5% and 11.6% compared with logistic regression. The reason was that CNN explicitly modeled the relationship between word features and the categories of happy moments by extracting important word features through convolution and pooling operations. </sec> <sec> <title>CONCLUSIONS</title> This is the first study to analyze happy moments based on deep learning methods. Compared with the traditional machine learning methods, deep learning methods, especially CNN, showed superiority on classifying the happy moments, which would facilitate understanding of the reasons why users feel happy and thus help policy makers formulate targeted policies to promote happiness. </sec>" @default.
- W4239468669 created "2022-05-12" @default.
- W4239468669 creator A5010490481 @default.
- W4239468669 creator A5024206808 @default.
- W4239468669 creator A5038521974 @default.
- W4239468669 creator A5066267829 @default.
- W4239468669 date "2019-03-04" @default.
- W4239468669 modified "2023-09-27" @default.
- W4239468669 title "A Deep Learning Method to Analyze and Classify Happy Moments: A Comparative Analytic Study (Preprint)" @default.
- W4239468669 cites W1485941188 @default.
- W4239468669 cites W1589892732 @default.
- W4239468669 cites W1988751129 @default.
- W4239468669 cites W2022795191 @default.
- W4239468669 cites W2062067234 @default.
- W4239468669 cites W2141316516 @default.
- W4239468669 cites W2244985651 @default.
- W4239468669 cites W2517194566 @default.
- W4239468669 cites W2577450518 @default.
- W4239468669 cites W2590462354 @default.
- W4239468669 cites W2775623353 @default.
- W4239468669 cites W2800636364 @default.
- W4239468669 cites W2801170057 @default.
- W4239468669 cites W2919115771 @default.
- W4239468669 cites W3126140319 @default.
- W4239468669 doi "https://doi.org/10.2196/preprints.13894" @default.
- W4239468669 hasPublicationYear "2019" @default.
- W4239468669 type Work @default.
- W4239468669 citedByCount "0" @default.
- W4239468669 crossrefType "posted-content" @default.
- W4239468669 hasAuthorship W4239468669A5010490481 @default.
- W4239468669 hasAuthorship W4239468669A5024206808 @default.
- W4239468669 hasAuthorship W4239468669A5038521974 @default.
- W4239468669 hasAuthorship W4239468669A5066267829 @default.
- W4239468669 hasConcept C100660578 @default.
- W4239468669 hasConcept C108583219 @default.
- W4239468669 hasConcept C119857082 @default.
- W4239468669 hasConcept C12267149 @default.
- W4239468669 hasConcept C122980154 @default.
- W4239468669 hasConcept C154945302 @default.
- W4239468669 hasConcept C15744967 @default.
- W4239468669 hasConcept C166955791 @default.
- W4239468669 hasConcept C180747234 @default.
- W4239468669 hasConcept C199360897 @default.
- W4239468669 hasConcept C2778999518 @default.
- W4239468669 hasConcept C41008148 @default.
- W4239468669 hasConcept C52001869 @default.
- W4239468669 hasConcept C77805123 @default.
- W4239468669 hasConcept C81363708 @default.
- W4239468669 hasConcept C81669768 @default.
- W4239468669 hasConceptScore W4239468669C100660578 @default.
- W4239468669 hasConceptScore W4239468669C108583219 @default.
- W4239468669 hasConceptScore W4239468669C119857082 @default.
- W4239468669 hasConceptScore W4239468669C12267149 @default.
- W4239468669 hasConceptScore W4239468669C122980154 @default.
- W4239468669 hasConceptScore W4239468669C154945302 @default.
- W4239468669 hasConceptScore W4239468669C15744967 @default.
- W4239468669 hasConceptScore W4239468669C166955791 @default.
- W4239468669 hasConceptScore W4239468669C180747234 @default.
- W4239468669 hasConceptScore W4239468669C199360897 @default.
- W4239468669 hasConceptScore W4239468669C2778999518 @default.
- W4239468669 hasConceptScore W4239468669C41008148 @default.
- W4239468669 hasConceptScore W4239468669C52001869 @default.
- W4239468669 hasConceptScore W4239468669C77805123 @default.
- W4239468669 hasConceptScore W4239468669C81363708 @default.
- W4239468669 hasConceptScore W4239468669C81669768 @default.
- W4239468669 hasLocation W42394686691 @default.
- W4239468669 hasOpenAccess W4239468669 @default.
- W4239468669 hasPrimaryLocation W42394686691 @default.
- W4239468669 hasRelatedWork W10961682 @default.
- W4239468669 hasRelatedWork W12568999 @default.
- W4239468669 hasRelatedWork W12821309 @default.
- W4239468669 hasRelatedWork W13034104 @default.
- W4239468669 hasRelatedWork W326638 @default.
- W4239468669 hasRelatedWork W4505823 @default.
- W4239468669 hasRelatedWork W5403265 @default.
- W4239468669 hasRelatedWork W621929 @default.
- W4239468669 hasRelatedWork W7303821 @default.
- W4239468669 hasRelatedWork W6520261 @default.
- W4239468669 isParatext "false" @default.
- W4239468669 isRetracted "false" @default.
- W4239468669 workType "article" @default.