Matches in SemOpenAlex for { <https://semopenalex.org/work/W4239553645> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4239553645 abstract "Wildfires are a growing problem in the US and worldwide — in the last decade we witnessed some of the most destructive, costliest, and deadliest incidents in recorded history. Possible solutions include early fire detection and preventative scans of wildlands — tasks that can be efficiently realized with an Unmanned Aerial Vehicle equipped with an appropriate sensing payload. This thesis proposes a vision-based multimodal fire detection system capable of early detection of new wildfires from a drone, as well as aerial surveillance of existing ones. This work discusses the design of the system and its effectiveness, which is evaluated on fire image datasets, as well as the data collected by the system over a real-world 80-acre wildfire. The Deep CNN model used in the RGB pipeline achieves the test accuracy of 0.975 on an internal dataset, and a state-of-the-art 0.958 accuracy on an external general-purpose fire detection dataset. Furthermore, the fused RGB+IR pipeline is shown to increase the image classification accuracy by 1.4pp, and the sensitivity by 6.0pp over the RGB-only pipeline, achieving a final accuracy of 0.958 in a real-world wildfire scenario. All results are obtained with attention to embedded hardware constraints, and the proposed system achieves an end-to-end throughput of 20FPS, while relying exclusively on onboard resources. Lastly, this thesis introduces two auxiliary components: the Aerial Fire Dataset, a large open dataset of aerial imagery from real-world fire incidents, and the Fire Perception Box, a multimodal RGB+IR camera hardware with GPU acceleration; both contributions are free and open source. Overall, the system is capable of fully onboard, vision-based fire detection that produces spatial results which can be utilized to obtain real-time wildfire maps — a technology that is very much needed in fire management." @default.
- W4239553645 created "2022-05-12" @default.
- W4239553645 creator A5061649572 @default.
- W4239553645 date "2021-02-24" @default.
- W4239553645 modified "2023-09-26" @default.
- W4239553645 title "Multimodal Wildfire Surveillance with Autonomous Drones" @default.
- W4239553645 doi "https://doi.org/10.31979/etd.uuz8-rsts" @default.
- W4239553645 hasPublicationYear "2021" @default.
- W4239553645 type Work @default.
- W4239553645 citedByCount "0" @default.
- W4239553645 crossrefType "dissertation" @default.
- W4239553645 hasAuthorship W4239553645A5061649572 @default.
- W4239553645 hasConcept C115961682 @default.
- W4239553645 hasConcept C127413603 @default.
- W4239553645 hasConcept C134066672 @default.
- W4239553645 hasConcept C154945302 @default.
- W4239553645 hasConcept C158379750 @default.
- W4239553645 hasConcept C170154142 @default.
- W4239553645 hasConcept C199360897 @default.
- W4239553645 hasConcept C205649164 @default.
- W4239553645 hasConcept C2776429412 @default.
- W4239553645 hasConcept C2780836893 @default.
- W4239553645 hasConcept C2987819851 @default.
- W4239553645 hasConcept C31972630 @default.
- W4239553645 hasConcept C38652104 @default.
- W4239553645 hasConcept C41008148 @default.
- W4239553645 hasConcept C43521106 @default.
- W4239553645 hasConcept C54355233 @default.
- W4239553645 hasConcept C59519942 @default.
- W4239553645 hasConcept C62649853 @default.
- W4239553645 hasConcept C79403827 @default.
- W4239553645 hasConcept C82990744 @default.
- W4239553645 hasConcept C86803240 @default.
- W4239553645 hasConceptScore W4239553645C115961682 @default.
- W4239553645 hasConceptScore W4239553645C127413603 @default.
- W4239553645 hasConceptScore W4239553645C134066672 @default.
- W4239553645 hasConceptScore W4239553645C154945302 @default.
- W4239553645 hasConceptScore W4239553645C158379750 @default.
- W4239553645 hasConceptScore W4239553645C170154142 @default.
- W4239553645 hasConceptScore W4239553645C199360897 @default.
- W4239553645 hasConceptScore W4239553645C205649164 @default.
- W4239553645 hasConceptScore W4239553645C2776429412 @default.
- W4239553645 hasConceptScore W4239553645C2780836893 @default.
- W4239553645 hasConceptScore W4239553645C2987819851 @default.
- W4239553645 hasConceptScore W4239553645C31972630 @default.
- W4239553645 hasConceptScore W4239553645C38652104 @default.
- W4239553645 hasConceptScore W4239553645C41008148 @default.
- W4239553645 hasConceptScore W4239553645C43521106 @default.
- W4239553645 hasConceptScore W4239553645C54355233 @default.
- W4239553645 hasConceptScore W4239553645C59519942 @default.
- W4239553645 hasConceptScore W4239553645C62649853 @default.
- W4239553645 hasConceptScore W4239553645C79403827 @default.
- W4239553645 hasConceptScore W4239553645C82990744 @default.
- W4239553645 hasConceptScore W4239553645C86803240 @default.
- W4239553645 hasLocation W42395536451 @default.
- W4239553645 hasOpenAccess W4239553645 @default.
- W4239553645 hasPrimaryLocation W42395536451 @default.
- W4239553645 hasRelatedWork W2401150520 @default.
- W4239553645 hasRelatedWork W2889866244 @default.
- W4239553645 hasRelatedWork W2898690910 @default.
- W4239553645 hasRelatedWork W3101676691 @default.
- W4239553645 hasRelatedWork W4224096858 @default.
- W4239553645 hasRelatedWork W4226383822 @default.
- W4239553645 hasRelatedWork W4239553645 @default.
- W4239553645 hasRelatedWork W4280591372 @default.
- W4239553645 hasRelatedWork W4285802252 @default.
- W4239553645 hasRelatedWork W4364297048 @default.
- W4239553645 isParatext "false" @default.
- W4239553645 isRetracted "false" @default.
- W4239553645 workType "dissertation" @default.