Matches in SemOpenAlex for { <https://semopenalex.org/work/W4239940206> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4239940206 abstract "In this paper we discuss the use of modern data mining (DM) methods to design risk-based insurance premiums for motor vehicles. Our objective is to predict the likelihood and expected value of future claims for each insured based on a myriad of attributes available in the database on the customers and their peers. The model results may then be used for underwriting and for rate making. We employ a two-stage approach, involving a survival analysis model and a linear regression model, to estimate the risk level of each customer and the proneness to file a claim. The study was performed on actual data set obtained from a small insurance company. We demonstrate our ability to discover new underwriting parameters, build accurate predictive models and to distinguish between distinct groups of policies. The new method creates a new ordering of the policies where the most risky people were, on the average, 12 times more expensive than the least risky people. The importance of the study is not in the particular results, which are specific for the particular company and its environment, but rather in the demonstration of the general ability to use data mining for insurance rate making purposes, and in the original use of the concept of survival analysis and the concept of mean time between claims for this purpose." @default.
- W4239940206 created "2022-05-12" @default.
- W4239940206 creator A5006112322 @default.
- W4239940206 creator A5015747552 @default.
- W4239940206 creator A5050773632 @default.
- W4239940206 creator A5080552084 @default.
- W4239940206 date "2007-05-01" @default.
- W4239940206 modified "2023-10-17" @default.
- W4239940206 title "Applying Data Mining Technology for Insurance Rate Making: An Example of Automobile Insurance" @default.
- W4239940206 doi "https://doi.org/10.2202/1793-2157.1014" @default.
- W4239940206 hasPublicationYear "2007" @default.
- W4239940206 type Work @default.
- W4239940206 citedByCount "0" @default.
- W4239940206 crossrefType "journal-article" @default.
- W4239940206 hasAuthorship W4239940206A5006112322 @default.
- W4239940206 hasAuthorship W4239940206A5015747552 @default.
- W4239940206 hasAuthorship W4239940206A5050773632 @default.
- W4239940206 hasAuthorship W4239940206A5080552084 @default.
- W4239940206 hasConcept C144133560 @default.
- W4239940206 hasConcept C162118730 @default.
- W4239940206 hasConcept C177264268 @default.
- W4239940206 hasConcept C199360897 @default.
- W4239940206 hasConcept C26503482 @default.
- W4239940206 hasConcept C2992945734 @default.
- W4239940206 hasConcept C41008148 @default.
- W4239940206 hasConceptScore W4239940206C144133560 @default.
- W4239940206 hasConceptScore W4239940206C162118730 @default.
- W4239940206 hasConceptScore W4239940206C177264268 @default.
- W4239940206 hasConceptScore W4239940206C199360897 @default.
- W4239940206 hasConceptScore W4239940206C26503482 @default.
- W4239940206 hasConceptScore W4239940206C2992945734 @default.
- W4239940206 hasConceptScore W4239940206C41008148 @default.
- W4239940206 hasIssue "1" @default.
- W4239940206 hasLocation W42399402061 @default.
- W4239940206 hasOpenAccess W4239940206 @default.
- W4239940206 hasPrimaryLocation W42399402061 @default.
- W4239940206 hasRelatedWork W1992658604 @default.
- W4239940206 hasRelatedWork W2064200022 @default.
- W4239940206 hasRelatedWork W2323214010 @default.
- W4239940206 hasRelatedWork W2334116406 @default.
- W4239940206 hasRelatedWork W2600177231 @default.
- W4239940206 hasRelatedWork W3022733678 @default.
- W4239940206 hasRelatedWork W3125109158 @default.
- W4239940206 hasRelatedWork W571975718 @default.
- W4239940206 hasRelatedWork W591583119 @default.
- W4239940206 hasRelatedWork W2103744879 @default.
- W4239940206 hasVolume "2" @default.
- W4239940206 isParatext "false" @default.
- W4239940206 isRetracted "false" @default.
- W4239940206 workType "article" @default.