Matches in SemOpenAlex for { <https://semopenalex.org/work/W4239946314> ?p ?o ?g. }
- W4239946314 endingPage "2558" @default.
- W4239946314 startingPage "2544" @default.
- W4239946314 abstract "A huge number of informal messages are posted every day in social network sites, blogs, and discussion forums. Emotions seem to be frequently important in these texts for expressing friendship, showing social support or as part of online arguments. Algorithms to identify sentiment and sentiment strength are needed to help understand the role of emotion in this informal communication and also to identify inappropriate or anomalous affective utterances, potentially associated with threatening behavior to the self or others. Nevertheless, existing sentiment detection algorithms tend to be commercially oriented, designed to identify opinions about products rather than user behaviors. This article partly fills this gap with a new algorithm, SentiStrength, to extract sentiment strength from informal English text, using new methods to exploit the de facto grammars and spelling styles of cyberspace. Applied to MySpace comments and with a lookup table of term sentiment strengths optimized by machine learning, SentiStrength is able to predict positive emotion with 60.6% accuracy and negative emotion with 72.8% accuracy, both based upon strength scales of 1–5. The former, but not the latter, is better than baseline and a wide range of general machine learning approaches." @default.
- W4239946314 created "2022-05-12" @default.
- W4239946314 creator A5019061543 @default.
- W4239946314 creator A5034823602 @default.
- W4239946314 creator A5036831318 @default.
- W4239946314 creator A5037942269 @default.
- W4239946314 creator A5076122659 @default.
- W4239946314 date "2010-12-01" @default.
- W4239946314 modified "2023-10-16" @default.
- W4239946314 title "Sentiment strength detection in short informal text" @default.
- W4239946314 cites W1489670474 @default.
- W4239946314 cites W1573641422 @default.
- W4239946314 cites W1595791987 @default.
- W4239946314 cites W1966797434 @default.
- W4239946314 cites W1969769481 @default.
- W4239946314 cites W1982936079 @default.
- W4239946314 cites W2001097956 @default.
- W4239946314 cites W2005624335 @default.
- W4239946314 cites W2010595692 @default.
- W4239946314 cites W2014902591 @default.
- W4239946314 cites W2015525779 @default.
- W4239946314 cites W2034163998 @default.
- W4239946314 cites W2035265584 @default.
- W4239946314 cites W2040378199 @default.
- W4239946314 cites W2045854020 @default.
- W4239946314 cites W2053463056 @default.
- W4239946314 cites W2063998312 @default.
- W4239946314 cites W2066259047 @default.
- W4239946314 cites W2066717968 @default.
- W4239946314 cites W2067983645 @default.
- W4239946314 cites W2075878045 @default.
- W4239946314 cites W2079521622 @default.
- W4239946314 cites W2081687495 @default.
- W4239946314 cites W2095234413 @default.
- W4239946314 cites W2100772444 @default.
- W4239946314 cites W2112279498 @default.
- W4239946314 cites W2118459787 @default.
- W4239946314 cites W2133341045 @default.
- W4239946314 cites W2134336897 @default.
- W4239946314 cites W2135756832 @default.
- W4239946314 cites W2140144518 @default.
- W4239946314 cites W2141766660 @default.
- W4239946314 cites W2146111747 @default.
- W4239946314 cites W2161217179 @default.
- W4239946314 cites W2162521772 @default.
- W4239946314 cites W2165418599 @default.
- W4239946314 cites W2171060319 @default.
- W4239946314 cites W4205184193 @default.
- W4239946314 cites W4231988426 @default.
- W4239946314 cites W4236043704 @default.
- W4239946314 cites W4237381338 @default.
- W4239946314 cites W4251804053 @default.
- W4239946314 cites W4252283213 @default.
- W4239946314 cites W4292994367 @default.
- W4239946314 doi "https://doi.org/10.1002/asi.21416" @default.
- W4239946314 hasPublicationYear "2010" @default.
- W4239946314 type Work @default.
- W4239946314 citedByCount "948" @default.
- W4239946314 countsByYear W42399463142012 @default.
- W4239946314 countsByYear W42399463142013 @default.
- W4239946314 countsByYear W42399463142014 @default.
- W4239946314 countsByYear W42399463142015 @default.
- W4239946314 countsByYear W42399463142016 @default.
- W4239946314 countsByYear W42399463142017 @default.
- W4239946314 countsByYear W42399463142018 @default.
- W4239946314 countsByYear W42399463142019 @default.
- W4239946314 countsByYear W42399463142020 @default.
- W4239946314 countsByYear W42399463142021 @default.
- W4239946314 countsByYear W42399463142022 @default.
- W4239946314 countsByYear W42399463142023 @default.
- W4239946314 crossrefType "journal-article" @default.
- W4239946314 hasAuthorship W4239946314A5019061543 @default.
- W4239946314 hasAuthorship W4239946314A5034823602 @default.
- W4239946314 hasAuthorship W4239946314A5036831318 @default.
- W4239946314 hasAuthorship W4239946314A5037942269 @default.
- W4239946314 hasAuthorship W4239946314A5076122659 @default.
- W4239946314 hasBestOaLocation W42399463142 @default.
- W4239946314 hasConcept C110875604 @default.
- W4239946314 hasConcept C136764020 @default.
- W4239946314 hasConcept C138885662 @default.
- W4239946314 hasConcept C154945302 @default.
- W4239946314 hasConcept C15744967 @default.
- W4239946314 hasConcept C165696696 @default.
- W4239946314 hasConcept C204321447 @default.
- W4239946314 hasConcept C2777438025 @default.
- W4239946314 hasConcept C2777801307 @default.
- W4239946314 hasConcept C2778736484 @default.
- W4239946314 hasConcept C2781241145 @default.
- W4239946314 hasConcept C2988148770 @default.
- W4239946314 hasConcept C38652104 @default.
- W4239946314 hasConcept C41008148 @default.
- W4239946314 hasConcept C41895202 @default.
- W4239946314 hasConcept C66402592 @default.
- W4239946314 hasConcept C77805123 @default.
- W4239946314 hasConcept C83860907 @default.
- W4239946314 hasConceptScore W4239946314C110875604 @default.
- W4239946314 hasConceptScore W4239946314C136764020 @default.
- W4239946314 hasConceptScore W4239946314C138885662 @default.