Matches in SemOpenAlex for { <https://semopenalex.org/work/W4240193394> ?p ?o ?g. }
- W4240193394 abstract "<sec> <title>BACKGROUND</title> Social media has become a major resource for observing and understanding public opinions using infodemiology and infoveillance methods, especially during emergencies such as disease outbreaks. For public health agencies, understanding the driving forces of web-based discussions will help deliver more effective and efficient information to general users on social media and the web. </sec> <sec> <title>OBJECTIVE</title> The study aimed to identify the major contributors that drove overall Zika-related tweeting dynamics during the 2016 epidemic. In total, 3 hypothetical drivers were proposed: (1) the underlying Zika epidemic quantified as a time series of case counts; (2) sporadic but critical real-world events such as the 2016 Rio Olympics and World Health Organization’s Public Health Emergency of International Concern (PHEIC) announcement, and (3) a few influential users’ tweeting activities. </sec> <sec> <title>METHODS</title> All tweets and retweets (RTs) containing the keyword Zika posted in 2016 were collected via the Gnip application programming interface (API). We developed an analytical pipeline, EventPeriscope, to identify co-occurring trending events with Zika and quantify the strength of these events. We also retrieved Zika case data and identified the top influencers of the Zika discussion on Twitter. The influence of 3 potential drivers was examined via a multivariate time series analysis, signal processing, a content analysis, and text mining techniques. </sec> <sec> <title>RESULTS</title> Zika-related tweeting dynamics were not significantly correlated with the underlying Zika epidemic in the United States in any of the four quarters in 2016 nor in the entire year. Instead, peaks of Zika-related tweeting activity were strongly associated with a few critical real-world events, both planned, such as the Rio Olympics, and unplanned, such as the PHEIC announcement. The Rio Olympics was mentioned in >15% of all Zika-related tweets and PHEIC occurred in 27% of Zika-related tweets around their respective peaks. In addition, the overall tweeting dynamics of the top 100 most actively tweeting users on the Zika topic, the top 100 users receiving most RTs, and the top 100 users mentioned were the most highly correlated to and preceded the overall tweeting dynamics, making these groups of users the potential drivers of tweeting dynamics. The top 100 users who retweeted the most were not critical in driving the overall tweeting dynamics. There were very few overlaps among these different groups of potentially influential users. </sec> <sec> <title>CONCLUSIONS</title> Using our proposed analytical workflow, EventPeriscope, we identified that Zika discussion dynamics on Twitter were decoupled from the actual disease epidemic in the United States but were closely related to and highly influenced by certain sporadic real-world events as well as by a few influential users. This study provided a methodology framework and insights to better understand the driving forces of web-based public discourse during health emergencies. Therefore, health agencies could deliver more effective and efficient web-based communications in emerging crises. </sec>" @default.
- W4240193394 created "2022-05-12" @default.
- W4240193394 creator A5011363103 @default.
- W4240193394 creator A5012118238 @default.
- W4240193394 creator A5029749535 @default.
- W4240193394 creator A5069570102 @default.
- W4240193394 creator A5081931817 @default.
- W4240193394 creator A5083674230 @default.
- W4240193394 date "2019-11-24" @default.
- W4240193394 modified "2023-09-28" @default.
- W4240193394 title "Identifying Influential Factors in the Discussion Dynamics of Emerging Health Issues on Social Media: Computational Study (Preprint)" @default.
- W4240193394 cites W1520905907 @default.
- W4240193394 cites W1525193327 @default.
- W4240193394 cites W1809871100 @default.
- W4240193394 cites W1873800563 @default.
- W4240193394 cites W1961375973 @default.
- W4240193394 cites W1971256347 @default.
- W4240193394 cites W1989585291 @default.
- W4240193394 cites W2001278490 @default.
- W4240193394 cites W2037986395 @default.
- W4240193394 cites W2089502871 @default.
- W4240193394 cites W2102742655 @default.
- W4240193394 cites W2104923010 @default.
- W4240193394 cites W2112257737 @default.
- W4240193394 cites W2115535574 @default.
- W4240193394 cites W2130040909 @default.
- W4240193394 cites W2135498674 @default.
- W4240193394 cites W2146029572 @default.
- W4240193394 cites W2165798627 @default.
- W4240193394 cites W2206279599 @default.
- W4240193394 cites W2254305612 @default.
- W4240193394 cites W2341180420 @default.
- W4240193394 cites W2396779641 @default.
- W4240193394 cites W2406229706 @default.
- W4240193394 cites W2464598814 @default.
- W4240193394 cites W2506577269 @default.
- W4240193394 cites W2513457109 @default.
- W4240193394 cites W2514461241 @default.
- W4240193394 cites W2550199357 @default.
- W4240193394 cites W2550759377 @default.
- W4240193394 cites W2553110962 @default.
- W4240193394 cites W2581789519 @default.
- W4240193394 cites W2595177560 @default.
- W4240193394 cites W2605545985 @default.
- W4240193394 cites W2607147673 @default.
- W4240193394 cites W2611405893 @default.
- W4240193394 cites W2747757410 @default.
- W4240193394 cites W2783170893 @default.
- W4240193394 cites W2786372315 @default.
- W4240193394 cites W2794257526 @default.
- W4240193394 cites W2809578469 @default.
- W4240193394 cites W2891031432 @default.
- W4240193394 cites W2923771419 @default.
- W4240193394 cites W2926099714 @default.
- W4240193394 cites W2952375801 @default.
- W4240193394 cites W4210397222 @default.
- W4240193394 cites W4211258374 @default.
- W4240193394 doi "https://doi.org/10.2196/preprints.17175" @default.
- W4240193394 hasPublicationYear "2019" @default.
- W4240193394 type Work @default.
- W4240193394 citedByCount "1" @default.
- W4240193394 countsByYear W42401933942020 @default.
- W4240193394 crossrefType "posted-content" @default.
- W4240193394 hasAuthorship W4240193394A5011363103 @default.
- W4240193394 hasAuthorship W4240193394A5012118238 @default.
- W4240193394 hasAuthorship W4240193394A5029749535 @default.
- W4240193394 hasAuthorship W4240193394A5069570102 @default.
- W4240193394 hasAuthorship W4240193394A5081931817 @default.
- W4240193394 hasAuthorship W4240193394A5083674230 @default.
- W4240193394 hasBestOaLocation W42401933942 @default.
- W4240193394 hasConcept C108827166 @default.
- W4240193394 hasConcept C136764020 @default.
- W4240193394 hasConcept C138816342 @default.
- W4240193394 hasConcept C144133560 @default.
- W4240193394 hasConcept C159047783 @default.
- W4240193394 hasConcept C159110408 @default.
- W4240193394 hasConcept C162853370 @default.
- W4240193394 hasConcept C17744445 @default.
- W4240193394 hasConcept C192975520 @default.
- W4240193394 hasConcept C205649164 @default.
- W4240193394 hasConcept C2522874641 @default.
- W4240193394 hasConcept C26011011 @default.
- W4240193394 hasConcept C2777053367 @default.
- W4240193394 hasConcept C41008148 @default.
- W4240193394 hasConcept C43169469 @default.
- W4240193394 hasConcept C518677369 @default.
- W4240193394 hasConcept C54649085 @default.
- W4240193394 hasConcept C71924100 @default.
- W4240193394 hasConceptScore W4240193394C108827166 @default.
- W4240193394 hasConceptScore W4240193394C136764020 @default.
- W4240193394 hasConceptScore W4240193394C138816342 @default.
- W4240193394 hasConceptScore W4240193394C144133560 @default.
- W4240193394 hasConceptScore W4240193394C159047783 @default.
- W4240193394 hasConceptScore W4240193394C159110408 @default.
- W4240193394 hasConceptScore W4240193394C162853370 @default.
- W4240193394 hasConceptScore W4240193394C17744445 @default.
- W4240193394 hasConceptScore W4240193394C192975520 @default.
- W4240193394 hasConceptScore W4240193394C205649164 @default.
- W4240193394 hasConceptScore W4240193394C2522874641 @default.
- W4240193394 hasConceptScore W4240193394C26011011 @default.