Matches in SemOpenAlex for { <https://semopenalex.org/work/W4240765383> ?p ?o ?g. }
- W4240765383 abstract "<sec> <title>BACKGROUND</title> Although the potential of big data analytics for health care is well recognized, evidence is lacking on its effects on public health. </sec> <sec> <title>OBJECTIVE</title> The aim of this study was to assess the impact of the use of big data analytics on people’s health based on the health indicators and core priorities in the World Health Organization (WHO) General Programme of Work 2019/2023 and the European Programme of Work (EPW), approved and adopted by its Member States, in addition to SARS-CoV-2–related studies. Furthermore, we sought to identify the most relevant challenges and opportunities of these tools with respect to people’s health. </sec> <sec> <title>METHODS</title> Six databases (MEDLINE, Embase, Cochrane Database of Systematic Reviews via Cochrane Library, Web of Science, Scopus, and Epistemonikos) were searched from the inception date to September 21, 2020. Systematic reviews assessing the effects of big data analytics on health indicators were included. Two authors independently performed screening, selection, data extraction, and quality assessment using the AMSTAR-2 (A Measurement Tool to Assess Systematic Reviews 2) checklist. </sec> <sec> <title>RESULTS</title> The literature search initially yielded 185 records, 35 of which met the inclusion criteria, involving more than 5,000,000 patients. Most of the included studies used patient data collected from electronic health records, hospital information systems, private patient databases, and imaging datasets, and involved the use of big data analytics for noncommunicable diseases. “Probability of dying from any of cardiovascular, cancer, diabetes or chronic renal disease” and “suicide mortality rate” were the most commonly assessed health indicators and core priorities within the WHO General Programme of Work 2019/2023 and the EPW 2020/2025. Big data analytics have shown moderate to high accuracy for the diagnosis and prediction of complications of diabetes mellitus as well as for the diagnosis and classification of mental disorders; prediction of suicide attempts and behaviors; and the diagnosis, treatment, and prediction of important clinical outcomes of several chronic diseases. Confidence in the results was rated as “critically low” for 25 reviews, as “low” for 7 reviews, and as “moderate” for 3 reviews. The most frequently identified challenges were establishment of a well-designed and structured data source, and a secure, transparent, and standardized database for patient data. </sec> <sec> <title>CONCLUSIONS</title> Although the overall quality of included studies was limited, big data analytics has shown moderate to high accuracy for the diagnosis of certain diseases, improvement in managing chronic diseases, and support for prompt and real-time analyses of large sets of varied input data to diagnose and predict disease outcomes. </sec> <sec> <title>CLINICALTRIAL</title> International Prospective Register of Systematic Reviews (PROSPERO) CRD42020214048; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=214048 </sec>" @default.
- W4240765383 created "2022-05-12" @default.
- W4240765383 creator A5011185954 @default.
- W4240765383 creator A5013336551 @default.
- W4240765383 creator A5037618706 @default.
- W4240765383 creator A5046370637 @default.
- W4240765383 creator A5062333685 @default.
- W4240765383 creator A5071147086 @default.
- W4240765383 creator A5085689685 @default.
- W4240765383 date "2021-01-19" @default.
- W4240765383 modified "2023-09-27" @default.
- W4240765383 title "Impact of Big Data Analytics on People’s Health: Overview of Systematic Reviews and Recommendations for Future Studies (Preprint)" @default.
- W4240765383 cites W1589432644 @default.
- W4240765383 cites W1964803288 @default.
- W4240765383 cites W2000442546 @default.
- W4240765383 cites W2002461314 @default.
- W4240765383 cites W2098923148 @default.
- W4240765383 cites W2177512971 @default.
- W4240765383 cites W2177870565 @default.
- W4240765383 cites W2308085519 @default.
- W4240765383 cites W2487200295 @default.
- W4240765383 cites W2549346488 @default.
- W4240765383 cites W2553101787 @default.
- W4240765383 cites W2569214105 @default.
- W4240765383 cites W2734832579 @default.
- W4240765383 cites W2753211498 @default.
- W4240765383 cites W2756578555 @default.
- W4240765383 cites W2799895073 @default.
- W4240765383 cites W2802925146 @default.
- W4240765383 cites W2806442587 @default.
- W4240765383 cites W2883860074 @default.
- W4240765383 cites W2885019712 @default.
- W4240765383 cites W2896013124 @default.
- W4240765383 cites W2899067514 @default.
- W4240765383 cites W2899170201 @default.
- W4240765383 cites W2901460192 @default.
- W4240765383 cites W2901737747 @default.
- W4240765383 cites W2905567853 @default.
- W4240765383 cites W2912581524 @default.
- W4240765383 cites W2918498292 @default.
- W4240765383 cites W2920223366 @default.
- W4240765383 cites W2941571155 @default.
- W4240765383 cites W2943491685 @default.
- W4240765383 cites W2945091031 @default.
- W4240765383 cites W2962760173 @default.
- W4240765383 cites W2970606797 @default.
- W4240765383 cites W2972112160 @default.
- W4240765383 cites W2973066167 @default.
- W4240765383 cites W2979307665 @default.
- W4240765383 cites W2985452234 @default.
- W4240765383 cites W2990375292 @default.
- W4240765383 cites W2990683333 @default.
- W4240765383 cites W2992764683 @default.
- W4240765383 cites W3013184758 @default.
- W4240765383 cites W3016037596 @default.
- W4240765383 cites W3018719651 @default.
- W4240765383 cites W3023067252 @default.
- W4240765383 cites W3031443331 @default.
- W4240765383 cites W3034655770 @default.
- W4240765383 cites W3036858161 @default.
- W4240765383 cites W3039254823 @default.
- W4240765383 cites W3049024012 @default.
- W4240765383 cites W3147809485 @default.
- W4240765383 cites W4229599448 @default.
- W4240765383 cites W4247792344 @default.
- W4240765383 cites W4294215472 @default.
- W4240765383 doi "https://doi.org/10.2196/preprints.27275" @default.
- W4240765383 hasPublicationYear "2021" @default.
- W4240765383 type Work @default.
- W4240765383 citedByCount "0" @default.
- W4240765383 crossrefType "posted-content" @default.
- W4240765383 hasAuthorship W4240765383A5011185954 @default.
- W4240765383 hasAuthorship W4240765383A5013336551 @default.
- W4240765383 hasAuthorship W4240765383A5037618706 @default.
- W4240765383 hasAuthorship W4240765383A5046370637 @default.
- W4240765383 hasAuthorship W4240765383A5062333685 @default.
- W4240765383 hasAuthorship W4240765383A5071147086 @default.
- W4240765383 hasAuthorship W4240765383A5085689685 @default.
- W4240765383 hasBestOaLocation W42407653832 @default.
- W4240765383 hasConcept C124101348 @default.
- W4240765383 hasConcept C142724271 @default.
- W4240765383 hasConcept C15744967 @default.
- W4240765383 hasConcept C160735492 @default.
- W4240765383 hasConcept C17744445 @default.
- W4240765383 hasConcept C180747234 @default.
- W4240765383 hasConcept C189708586 @default.
- W4240765383 hasConcept C199539241 @default.
- W4240765383 hasConcept C2522767166 @default.
- W4240765383 hasConcept C2776478404 @default.
- W4240765383 hasConcept C2777466982 @default.
- W4240765383 hasConcept C2779356329 @default.
- W4240765383 hasConcept C2779473830 @default.
- W4240765383 hasConcept C2779549880 @default.
- W4240765383 hasConcept C41008148 @default.
- W4240765383 hasConcept C512399662 @default.
- W4240765383 hasConcept C71924100 @default.
- W4240765383 hasConcept C75684735 @default.
- W4240765383 hasConcept C79158427 @default.
- W4240765383 hasConcept C83867959 @default.
- W4240765383 hasConcept C95190672 @default.