Matches in SemOpenAlex for { <https://semopenalex.org/work/W4241050692> ?p ?o ?g. }
- W4241050692 endingPage "641" @default.
- W4241050692 startingPage "620" @default.
- W4241050692 abstract "Intrusion detection system plays an important role in network security. However, network intrusion detection (NID) suffers from several problems, such as false positives, operational issues in high dimensional data, and the difficulty of detecting unknown threats. Most of the problems with intrusion detection are caused by improper implementation of the network intrusion detection system (NIDS). Over the past few years, computational intelligence (CI) has become an effective area in extending research capabilities. Thus, NIDS based upon CI is currently attracting considerable interest from the research community. The scope of this review will encompass the concept of NID and presents the core methods of CI, including support vector machine, hidden naïve Bayes, particle swarm optimization, genetic algorithm, and fuzzy logic. The findings of this review should provide useful insights into the application of different CI methods for NIDS over the literature, allowing to clearly define existing research challenges and progress, and to highlight promising new research directions." @default.
- W4241050692 created "2022-05-12" @default.
- W4241050692 creator A5045986527 @default.
- W4241050692 date "2021-01-01" @default.
- W4241050692 modified "2023-09-24" @default.
- W4241050692 title "Application of Computational Intelligence in Network Intrusion Detection" @default.
- W4241050692 cites W1042671528 @default.
- W4241050692 cites W1465090524 @default.
- W4241050692 cites W1482807246 @default.
- W4241050692 cites W1483650506 @default.
- W4241050692 cites W1495172800 @default.
- W4241050692 cites W1511622987 @default.
- W4241050692 cites W1554085250 @default.
- W4241050692 cites W1591480890 @default.
- W4241050692 cites W1687244664 @default.
- W4241050692 cites W1692174238 @default.
- W4241050692 cites W179611734 @default.
- W4241050692 cites W1980053379 @default.
- W4241050692 cites W1980476199 @default.
- W4241050692 cites W1988918299 @default.
- W4241050692 cites W1994212840 @default.
- W4241050692 cites W2012701999 @default.
- W4241050692 cites W2016070752 @default.
- W4241050692 cites W2017337590 @default.
- W4241050692 cites W2023067667 @default.
- W4241050692 cites W2030553727 @default.
- W4241050692 cites W2056736956 @default.
- W4241050692 cites W2065519815 @default.
- W4241050692 cites W2081706040 @default.
- W4241050692 cites W2095979141 @default.
- W4241050692 cites W2097034581 @default.
- W4241050692 cites W2099940443 @default.
- W4241050692 cites W2107409339 @default.
- W4241050692 cites W2108918564 @default.
- W4241050692 cites W2109364787 @default.
- W4241050692 cites W2110531057 @default.
- W4241050692 cites W2114834796 @default.
- W4241050692 cites W2116850883 @default.
- W4241050692 cites W2120617515 @default.
- W4241050692 cites W2122641792 @default.
- W4241050692 cites W2130676130 @default.
- W4241050692 cites W2134641333 @default.
- W4241050692 cites W2135946559 @default.
- W4241050692 cites W2139212933 @default.
- W4241050692 cites W2139669429 @default.
- W4241050692 cites W2150847526 @default.
- W4241050692 cites W2163034159 @default.
- W4241050692 cites W2166275707 @default.
- W4241050692 cites W2168573734 @default.
- W4241050692 cites W2168793393 @default.
- W4241050692 cites W2172238468 @default.
- W4241050692 cites W2191006491 @default.
- W4241050692 cites W2505196854 @default.
- W4241050692 cites W2623163150 @default.
- W4241050692 cites W4211007335 @default.
- W4241050692 cites W4236137412 @default.
- W4241050692 cites W4249923894 @default.
- W4241050692 cites W4251093187 @default.
- W4241050692 cites W9481221 @default.
- W4241050692 doi "https://doi.org/10.4018/978-1-7998-8048-6.ch032" @default.
- W4241050692 hasPublicationYear "2021" @default.
- W4241050692 type Work @default.
- W4241050692 citedByCount "0" @default.
- W4241050692 crossrefType "book-chapter" @default.
- W4241050692 hasAuthorship W4241050692A5045986527 @default.
- W4241050692 hasConcept C119857082 @default.
- W4241050692 hasConcept C124101348 @default.
- W4241050692 hasConcept C154945302 @default.
- W4241050692 hasConcept C182590292 @default.
- W4241050692 hasConcept C199360897 @default.
- W4241050692 hasConcept C27061796 @default.
- W4241050692 hasConcept C2778012447 @default.
- W4241050692 hasConcept C35525427 @default.
- W4241050692 hasConcept C38652104 @default.
- W4241050692 hasConcept C41008148 @default.
- W4241050692 hasConcept C58166 @default.
- W4241050692 hasConcept C64869954 @default.
- W4241050692 hasConcept C85617194 @default.
- W4241050692 hasConceptScore W4241050692C119857082 @default.
- W4241050692 hasConceptScore W4241050692C124101348 @default.
- W4241050692 hasConceptScore W4241050692C154945302 @default.
- W4241050692 hasConceptScore W4241050692C182590292 @default.
- W4241050692 hasConceptScore W4241050692C199360897 @default.
- W4241050692 hasConceptScore W4241050692C27061796 @default.
- W4241050692 hasConceptScore W4241050692C2778012447 @default.
- W4241050692 hasConceptScore W4241050692C35525427 @default.
- W4241050692 hasConceptScore W4241050692C38652104 @default.
- W4241050692 hasConceptScore W4241050692C41008148 @default.
- W4241050692 hasConceptScore W4241050692C58166 @default.
- W4241050692 hasConceptScore W4241050692C64869954 @default.
- W4241050692 hasConceptScore W4241050692C85617194 @default.
- W4241050692 hasLocation W42410506921 @default.
- W4241050692 hasOpenAccess W4241050692 @default.
- W4241050692 hasPrimaryLocation W42410506921 @default.
- W4241050692 hasRelatedWork W11018933 @default.
- W4241050692 hasRelatedWork W2972487 @default.
- W4241050692 hasRelatedWork W482721 @default.
- W4241050692 hasRelatedWork W6001892 @default.