Matches in SemOpenAlex for { <https://semopenalex.org/work/W4241736364> ?p ?o ?g. }
- W4241736364 abstract "<sec> <title>BACKGROUND</title> Cognitive behavioral therapy (CBT)-based interventions are effective in reducing prenatal stress, which can have severe adverse health effects on mother and newborn if unaddressed. Predicting next-day physiologic or perceived stress can help to inform and enable preemptive interventions for a likely physiologically and/or perceptibly stressful day. Machine learning models are useful tools that can be developed to predict next-day physiologic and perceived stress using data collected the previous day. Such models can improve our understanding of the specific factors that predict physiologic and perceived stress and will also allow researchers to develop systems that collect selected features for assessment for clinical trials in order to minimize the burden of data collection. </sec> <sec> <title>OBJECTIVE</title> To build and evaluate a machine-learned model that predicts next-day physiologic and perceived stress using sensor-based, ecological momentary assessment (EMA)-based, and intervention-based features and to explain the prediction results. </sec> <sec> <title>METHODS</title> We enrolled pregnant women into a prospective proof-of-concept study and collected electrocardiography, EMA, and CBT intervention data over 12 weeks. We used the data to train and evaluate six machine learning models to predict next-day physiologic and perceived stress. After selecting the best performing model, SHapley Additive exPlanations (SHAP) were used to identify feature importance and explainability of each feature. </sec> <sec> <title>RESULTS</title> A total of 16 pregnant women enrolled in the study. Overall, 4157.18 hours of data were collected, and participants answered 2838 EMAs. After applying feature selection, 8 and 10 features were found to positively predict next-day physiologic and perceived stress, respectively. A random forest classifier performed the best in predicting next-day physiologic (F1-score 0.84) and next-day perceived stress (F1-score 0.74) using all features. While any subset of sensor-based, EMA-based, and/or intervention-based features could reliably predict next-day physiologic stress, EMA-based features were necessary to predict next-day perceived stress. Analysis of explainability metrics showed that prolonged duration of physiologic stress was highly predictive of next-day physiologic stress and that physiologic stress and perceived stress were temporally divergent. </sec> <sec> <title>CONCLUSIONS</title> In this study we were able to build interpretable machine learning models to predict next-day physiologic and perceived stress, and we identify unique features that were highly predictive of next-day stress that can help reduce the burden of data collection. </sec>" @default.
- W4241736364 created "2022-05-12" @default.
- W4241736364 creator A5001385856 @default.
- W4241736364 creator A5022254204 @default.
- W4241736364 creator A5026525847 @default.
- W4241736364 creator A5030035317 @default.
- W4241736364 creator A5038049072 @default.
- W4241736364 creator A5052191472 @default.
- W4241736364 creator A5063019280 @default.
- W4241736364 creator A5063131292 @default.
- W4241736364 creator A5069468307 @default.
- W4241736364 date "2021-09-26" @default.
- W4241736364 modified "2023-10-16" @default.
- W4241736364 title "Predicting Next-Day Perceived and Physiological Stress of Pregnant Women Using Machine Learning and Explainability: Algorithm Development and Validation (Preprint)" @default.
- W4241736364 cites W1985581104 @default.
- W4241736364 cites W1988959073 @default.
- W4241736364 cites W1991093380 @default.
- W4241736364 cites W1992502032 @default.
- W4241736364 cites W1994048221 @default.
- W4241736364 cites W1996685790 @default.
- W4241736364 cites W2027381571 @default.
- W4241736364 cites W2032512569 @default.
- W4241736364 cites W2032553935 @default.
- W4241736364 cites W2032775916 @default.
- W4241736364 cites W2036735145 @default.
- W4241736364 cites W2048799165 @default.
- W4241736364 cites W2066233808 @default.
- W4241736364 cites W2074820813 @default.
- W4241736364 cites W2076655174 @default.
- W4241736364 cites W2081629500 @default.
- W4241736364 cites W2103550033 @default.
- W4241736364 cites W2110675017 @default.
- W4241736364 cites W2126062671 @default.
- W4241736364 cites W2132262263 @default.
- W4241736364 cites W2140826864 @default.
- W4241736364 cites W2149264570 @default.
- W4241736364 cites W2155728685 @default.
- W4241736364 cites W2159647768 @default.
- W4241736364 cites W2164526365 @default.
- W4241736364 cites W2187884992 @default.
- W4241736364 cites W2220182234 @default.
- W4241736364 cites W2500764256 @default.
- W4241736364 cites W251594513 @default.
- W4241736364 cites W2550780661 @default.
- W4241736364 cites W2561869757 @default.
- W4241736364 cites W2609940642 @default.
- W4241736364 cites W2612408532 @default.
- W4241736364 cites W2619932259 @default.
- W4241736364 cites W2796136589 @default.
- W4241736364 cites W2807256010 @default.
- W4241736364 cites W2898432349 @default.
- W4241736364 cites W2913785089 @default.
- W4241736364 cites W2919207316 @default.
- W4241736364 cites W2929751249 @default.
- W4241736364 cites W2966772620 @default.
- W4241736364 cites W2972463583 @default.
- W4241736364 cites W2972729724 @default.
- W4241736364 cites W3108854625 @default.
- W4241736364 doi "https://doi.org/10.2196/preprints.33850" @default.
- W4241736364 hasPublicationYear "2021" @default.
- W4241736364 type Work @default.
- W4241736364 citedByCount "0" @default.
- W4241736364 crossrefType "posted-content" @default.
- W4241736364 hasAuthorship W4241736364A5001385856 @default.
- W4241736364 hasAuthorship W4241736364A5022254204 @default.
- W4241736364 hasAuthorship W4241736364A5026525847 @default.
- W4241736364 hasAuthorship W4241736364A5030035317 @default.
- W4241736364 hasAuthorship W4241736364A5038049072 @default.
- W4241736364 hasAuthorship W4241736364A5052191472 @default.
- W4241736364 hasAuthorship W4241736364A5063019280 @default.
- W4241736364 hasAuthorship W4241736364A5063131292 @default.
- W4241736364 hasAuthorship W4241736364A5069468307 @default.
- W4241736364 hasConcept C118552586 @default.
- W4241736364 hasConcept C119857082 @default.
- W4241736364 hasConcept C136764020 @default.
- W4241736364 hasConcept C138885662 @default.
- W4241736364 hasConcept C154945302 @default.
- W4241736364 hasConcept C15744967 @default.
- W4241736364 hasConcept C21036866 @default.
- W4241736364 hasConcept C27415008 @default.
- W4241736364 hasConcept C2780665704 @default.
- W4241736364 hasConcept C41008148 @default.
- W4241736364 hasConcept C41895202 @default.
- W4241736364 hasConcept C43169469 @default.
- W4241736364 hasConcept C71924100 @default.
- W4241736364 hasConceptScore W4241736364C118552586 @default.
- W4241736364 hasConceptScore W4241736364C119857082 @default.
- W4241736364 hasConceptScore W4241736364C136764020 @default.
- W4241736364 hasConceptScore W4241736364C138885662 @default.
- W4241736364 hasConceptScore W4241736364C154945302 @default.
- W4241736364 hasConceptScore W4241736364C15744967 @default.
- W4241736364 hasConceptScore W4241736364C21036866 @default.
- W4241736364 hasConceptScore W4241736364C27415008 @default.
- W4241736364 hasConceptScore W4241736364C2780665704 @default.
- W4241736364 hasConceptScore W4241736364C41008148 @default.
- W4241736364 hasConceptScore W4241736364C41895202 @default.
- W4241736364 hasConceptScore W4241736364C43169469 @default.
- W4241736364 hasConceptScore W4241736364C71924100 @default.
- W4241736364 hasLocation W42417363641 @default.
- W4241736364 hasOpenAccess W4241736364 @default.