Matches in SemOpenAlex for { <https://semopenalex.org/work/W4242104870> ?p ?o ?g. }
- W4242104870 abstract "Abstract. Organic aerosol concentrations are simulated using the WRF-CHEM model in Mexico City during the period from 24 to 29 March in association with the MILAGRO-2006 campaign. Two approaches are employed to predict the variation and spatial distribution of the organic aerosol concentrations: (1) a traditional 2-product secondary organic aerosol (SOA) model with non-volatile primary organic aerosols (POA); (2) a non-traditional SOA model including the volatility basis-set modeling method in which primary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA 2006 official emission inventory is used in simulations and the POA emissions are modified and distributed by volatility based on dilution experiments for the non-traditional SOA model. The model results are compared to the Aerosol Mass Spectrometry (AMS) observations analyzed using the Positive Matrix Factorization (PMF) technique at an urban background site (T0) and a suburban background site (T1) in Mexico City. The traditional SOA model frequently underestimates the observed POA concentrations during rush hours and overestimates the observations in the rest of the time in the city. The model also substantially underestimates the observed SOA concentrations, particularly during daytime, and only produces 21% and 25% of the observed SOA mass in the suburban and urban area, respectively. The non-traditional SOA model performs well in simulating the POA variation, but still overestimates during daytime in the urban area. The SOA simulations are significantly improved in the non-traditional SOA model compared to the traditional SOA model and the SOA production is increased by more than 100% in the city. However, the underestimation during daytime is still salient in the urban area and the non-traditional model also fails to reproduce the high level of SOA concentrations in the suburban area. In the non-traditional SOA model, the aging process of primary organic components considerably decreases the OH levels in simulations and further impacts the SOA formation. If the aging process in the non-traditional model does not have feedback on the OH in the gas-phase chemistry, the SOA production is enhanced by more than 10% compared to the simulations with the OH feedback during daytime, and the gap between the simulations and observations in the urban area is around 3 μg m−3 or 20% on average during late morning and early afternoon, within the uncertainty from the AMS measurements and PMF analysis. In addition, glyoxal and methylglyoxal can contribute up to approximately 10% of the observed SOA mass in the urban area and 4% in the suburban area. Including the non-OH feedback and the contribution of glyoxal and methylglyoxal, the non-traditional SOA model can explain up to 83% of the observed SOA in the urban area, and the underestimation during late morning and early afternoon is reduced to 0.9 μg m−3 or 6% on average. Considering the uncertainties from measurements, emissions, meteorological conditions, aging of SOA from anthropogenic VOCs, and contributions from background transport, the non-traditional SOA model is capable of closing the gap in SOA mass between measurements and models." @default.
- W4242104870 created "2022-05-12" @default.
- W4242104870 creator A5005353373 @default.
- W4242104870 creator A5006636346 @default.
- W4242104870 creator A5024464153 @default.
- W4242104870 creator A5026290341 @default.
- W4242104870 creator A5050379013 @default.
- W4242104870 creator A5079716586 @default.
- W4242104870 creator A5086481731 @default.
- W4242104870 date "2010-12-01" @default.
- W4242104870 modified "2023-09-25" @default.
- W4242104870 title "Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign" @default.
- W4242104870 cites W1964406071 @default.
- W4242104870 cites W1968393501 @default.
- W4242104870 cites W1968862760 @default.
- W4242104870 cites W1971521225 @default.
- W4242104870 cites W1975266316 @default.
- W4242104870 cites W1979659508 @default.
- W4242104870 cites W1982056270 @default.
- W4242104870 cites W1985285121 @default.
- W4242104870 cites W1999516548 @default.
- W4242104870 cites W2005422141 @default.
- W4242104870 cites W2012455158 @default.
- W4242104870 cites W2015559976 @default.
- W4242104870 cites W2029337195 @default.
- W4242104870 cites W2035014908 @default.
- W4242104870 cites W2035618697 @default.
- W4242104870 cites W2044160173 @default.
- W4242104870 cites W2044230617 @default.
- W4242104870 cites W2044724516 @default.
- W4242104870 cites W2045747043 @default.
- W4242104870 cites W2048817008 @default.
- W4242104870 cites W2050628260 @default.
- W4242104870 cites W2051730874 @default.
- W4242104870 cites W2052859509 @default.
- W4242104870 cites W2052875599 @default.
- W4242104870 cites W2053745186 @default.
- W4242104870 cites W2054473789 @default.
- W4242104870 cites W2054552851 @default.
- W4242104870 cites W2058512763 @default.
- W4242104870 cites W2061572473 @default.
- W4242104870 cites W2065989916 @default.
- W4242104870 cites W2066161240 @default.
- W4242104870 cites W2069912250 @default.
- W4242104870 cites W2072410985 @default.
- W4242104870 cites W2083339292 @default.
- W4242104870 cites W2086525090 @default.
- W4242104870 cites W2094434236 @default.
- W4242104870 cites W2098531686 @default.
- W4242104870 cites W2103289124 @default.
- W4242104870 cites W2116507044 @default.
- W4242104870 cites W2117610650 @default.
- W4242104870 cites W2121136157 @default.
- W4242104870 cites W2122530338 @default.
- W4242104870 cites W2122966070 @default.
- W4242104870 cites W2123059604 @default.
- W4242104870 cites W2123982908 @default.
- W4242104870 cites W2125782074 @default.
- W4242104870 cites W2129628802 @default.
- W4242104870 cites W2133054491 @default.
- W4242104870 cites W2134150838 @default.
- W4242104870 cites W2138215563 @default.
- W4242104870 cites W2140282454 @default.
- W4242104870 cites W2144923407 @default.
- W4242104870 cites W2147376263 @default.
- W4242104870 cites W2155534709 @default.
- W4242104870 cites W2158129017 @default.
- W4242104870 cites W2163140106 @default.
- W4242104870 cites W2163510770 @default.
- W4242104870 cites W2165680013 @default.
- W4242104870 cites W2166063496 @default.
- W4242104870 cites W2171810356 @default.
- W4242104870 cites W2171812510 @default.
- W4242104870 cites W2179912439 @default.
- W4242104870 cites W4231641183 @default.
- W4242104870 doi "https://doi.org/10.5194/acpd-10-29349-2010" @default.
- W4242104870 hasPublicationYear "2010" @default.
- W4242104870 type Work @default.
- W4242104870 citedByCount "1" @default.
- W4242104870 crossrefType "posted-content" @default.
- W4242104870 hasAuthorship W4242104870A5005353373 @default.
- W4242104870 hasAuthorship W4242104870A5006636346 @default.
- W4242104870 hasAuthorship W4242104870A5024464153 @default.
- W4242104870 hasAuthorship W4242104870A5026290341 @default.
- W4242104870 hasAuthorship W4242104870A5050379013 @default.
- W4242104870 hasAuthorship W4242104870A5079716586 @default.
- W4242104870 hasAuthorship W4242104870A5086481731 @default.
- W4242104870 hasBestOaLocation W42421048701 @default.
- W4242104870 hasConcept C106159729 @default.
- W4242104870 hasConcept C121332964 @default.
- W4242104870 hasConcept C126857682 @default.
- W4242104870 hasConcept C127313418 @default.
- W4242104870 hasConcept C133204551 @default.
- W4242104870 hasConcept C147789679 @default.
- W4242104870 hasConcept C153294291 @default.
- W4242104870 hasConcept C162324750 @default.
- W4242104870 hasConcept C162725370 @default.
- W4242104870 hasConcept C185592680 @default.
- W4242104870 hasConcept C205649164 @default.
- W4242104870 hasConcept C2779345167 @default.