Matches in SemOpenAlex for { <https://semopenalex.org/work/W4242111036> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4242111036 endingPage "323" @default.
- W4242111036 startingPage "322" @default.
- W4242111036 abstract "A CLEM study in biology aims at providing knowledge on the identity and localisation of cellular constituents of interest within a cell's ultrastructure. The key limitation of such experiments, however, is the registration precision between light and electron microscopic data. Precise registration is usually achieved using fiducial markers, visible in both imaging modalities [1]. Integrated microscopes, i.e. light and electron microscopy are performed in one machine [2], in contrast, offer an inherent high‐precision correlation. In such systems, photon emission from the sample, is either triggered by a light source (e.g. laser) or the electron beam. A glass objective lens, mounted below the sample collects the emitte light, that is ultimately detected by a photomultiplier tube or a camera [3]. This geometry is particularly advantageous for detecting a sample's cathodoluminescence (CL) signal, since roughly 80% of the emitted photons are emitted into the forward direction [3], and it allows for simultaneous, unobstructed secondary electron (SE) imaging. We evaluate a CL detector similar to the one described by Narváez et al. [3], with respect to its applicability to CL imaging of small synthetic fluorophores. As these fluorophores are readily damaged by the electron beam [4], we study the CL signal of these molecules dependent on primary energy and beam current. Based on the results of these experiments we image the CL signal of fluorescently labelled, resin embedded biological specimen. Our data indicate the feasibility of CL imaging for CLEM of biological specimen. The CL signal of 200 nm sized fluorescently labelled polystyrene beads, scales with primary energy (figure 1). Increasing the beam current increases the CL intensity (figure 2A) of individual images. Comparing image series taken at different beam currents (240 pA (240 frames), 480 pA (120 frames) and 1440 pA (40 frames)), a dose rate effect on the cumulative retrievable intensity (figure 2B) is observed. The signal‐to‐noise ratio can be maximized by either repeated scanning of the same area on the sample at low beam currents or by short pixel dwell times at higher beam currents. In both cases the final image is obtained by averaging the acquired frames. Analyses of the influence of beam current and primary energy on the CL signal were performed at a pixel dwell time of 6.4 µs. Cumulative intensities in figure 2 are presented as mean ± standard deviation of 4 different areas on the sample per condition. Having established that CL imaging of organic fluorophores is feasible, we imaged DNA stained with 1 µM Sytox® Green in mammalian cells. Figure 3 shows CL and SE images of 100 nm sections, of LR White embedded Hela cells before and after staining, deposited on ITO (Indium Tin Oxide) coated cover slips. CL signal of stained cell nuclei was detected at different magnifications. Following the imaging guidelines established for fluorescently labelled beads, CL of stained DNA was recorded by several fast scans (100 ns pixel dwell time) of the same position and averaging of the individual frames. Sections were imaged at 1 kV (unstained cells) and 2 kV (stained cells) primary energy, respectively, and a beam current of 480 pA. Currently we investigate, whether low temperatures (120 K) increase the beam stability of the CL signal. Another factor we currently address is the background signal in images of resin embedded samples (Figure 3), which results from photon emission upon electron beam excitation of the resin or the glass substrate." @default.
- W4242111036 created "2022-05-12" @default.
- W4242111036 creator A5030287616 @default.
- W4242111036 creator A5032884391 @default.
- W4242111036 creator A5035932142 @default.
- W4242111036 creator A5048070356 @default.
- W4242111036 creator A5086516224 @default.
- W4242111036 date "2016-12-20" @default.
- W4242111036 modified "2023-09-26" @default.
- W4242111036 title "Cathodoluminescence microscopy of biological samples for correlative light and electron microscopy (CLEM) using organic fluorophores" @default.
- W4242111036 cites W1980464617 @default.
- W4242111036 cites W2052575173 @default.
- W4242111036 cites W2065806340 @default.
- W4242111036 cites W2145494795 @default.
- W4242111036 doi "https://doi.org/10.1002/9783527808465.emc2016.5301" @default.
- W4242111036 hasPublicationYear "2016" @default.
- W4242111036 type Work @default.
- W4242111036 citedByCount "0" @default.
- W4242111036 crossrefType "other" @default.
- W4242111036 hasAuthorship W4242111036A5030287616 @default.
- W4242111036 hasAuthorship W4242111036A5032884391 @default.
- W4242111036 hasAuthorship W4242111036A5035932142 @default.
- W4242111036 hasAuthorship W4242111036A5048070356 @default.
- W4242111036 hasAuthorship W4242111036A5086516224 @default.
- W4242111036 hasBestOaLocation W42421110361 @default.
- W4242111036 hasConcept C113879476 @default.
- W4242111036 hasConcept C120665830 @default.
- W4242111036 hasConcept C121332964 @default.
- W4242111036 hasConcept C139861200 @default.
- W4242111036 hasConcept C147080431 @default.
- W4242111036 hasConcept C148869448 @default.
- W4242111036 hasConcept C154945302 @default.
- W4242111036 hasConcept C159317903 @default.
- W4242111036 hasConcept C173974348 @default.
- W4242111036 hasConcept C192562407 @default.
- W4242111036 hasConcept C199360897 @default.
- W4242111036 hasConcept C2776759294 @default.
- W4242111036 hasConcept C2779843651 @default.
- W4242111036 hasConcept C41008148 @default.
- W4242111036 hasConcept C64389972 @default.
- W4242111036 hasConcept C67649825 @default.
- W4242111036 hasConcept C91881484 @default.
- W4242111036 hasConcept C93877712 @default.
- W4242111036 hasConcept C94915269 @default.
- W4242111036 hasConceptScore W4242111036C113879476 @default.
- W4242111036 hasConceptScore W4242111036C120665830 @default.
- W4242111036 hasConceptScore W4242111036C121332964 @default.
- W4242111036 hasConceptScore W4242111036C139861200 @default.
- W4242111036 hasConceptScore W4242111036C147080431 @default.
- W4242111036 hasConceptScore W4242111036C148869448 @default.
- W4242111036 hasConceptScore W4242111036C154945302 @default.
- W4242111036 hasConceptScore W4242111036C159317903 @default.
- W4242111036 hasConceptScore W4242111036C173974348 @default.
- W4242111036 hasConceptScore W4242111036C192562407 @default.
- W4242111036 hasConceptScore W4242111036C199360897 @default.
- W4242111036 hasConceptScore W4242111036C2776759294 @default.
- W4242111036 hasConceptScore W4242111036C2779843651 @default.
- W4242111036 hasConceptScore W4242111036C41008148 @default.
- W4242111036 hasConceptScore W4242111036C64389972 @default.
- W4242111036 hasConceptScore W4242111036C67649825 @default.
- W4242111036 hasConceptScore W4242111036C91881484 @default.
- W4242111036 hasConceptScore W4242111036C93877712 @default.
- W4242111036 hasConceptScore W4242111036C94915269 @default.
- W4242111036 hasLocation W42421110361 @default.
- W4242111036 hasOpenAccess W4242111036 @default.
- W4242111036 hasPrimaryLocation W42421110361 @default.
- W4242111036 hasRelatedWork W1992834890 @default.
- W4242111036 hasRelatedWork W2031810297 @default.
- W4242111036 hasRelatedWork W2093716783 @default.
- W4242111036 hasRelatedWork W2094066981 @default.
- W4242111036 hasRelatedWork W2394851577 @default.
- W4242111036 hasRelatedWork W2730139571 @default.
- W4242111036 hasRelatedWork W3035875336 @default.
- W4242111036 hasRelatedWork W4242111036 @default.
- W4242111036 hasRelatedWork W4313356726 @default.
- W4242111036 hasRelatedWork W851723420 @default.
- W4242111036 isParatext "false" @default.
- W4242111036 isRetracted "false" @default.
- W4242111036 workType "other" @default.