Matches in SemOpenAlex for { <https://semopenalex.org/work/W4242263246> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4242263246 abstract "Conceptors are a recent development in the field of reservoir computing; they can be used to influence the dynamics of recurrent neural networks (RNNs), enabling generation of arbitrary patterns based on training data. Conceptors allow interpolation and extrapolation between patterns, and also provide a system of boolean logic for combining patterns together. Generation and manipulation of arbitrary patterns using conceptors has significant potential as a sound synthesis method for applications in computer music and procedural audio but has yet to be explored. Two novel methods of sound synthesis based on conceptors are introduced. Conceptular Synthesis is based on granular synthesis; sets of conceptors are trained to recall varying patterns from a single RNN, then a runtime mechanism switches between them, generating short patterns which are recombined into a longer sound. Conceptillators are trainable, pitch-controlled oscillators for harmonically rich waveforms, commonly used in a variety of sound synthesis applications. Both systems can exploit conceptor pattern morphing, boolean logic and manipulation of RNN dynamics, enabling new creative sonic possibilities. Experiments reveal how RNN runtime parameters can be used for pitch-independent timestretching and for precise frequency control of cyclic waveforms. They show how these techniques can create highly malleable sound synthesis models, trainable using short sound samples. Limitations are revealed with regards to reproduction quality, and pragmatic limitations are also shown, where exponential rises in computation and memory requirements preclude the use of these models for training with longer sound samples. The techniques presented here represent an initial exploration of the sound synthesis potential of conceptors; future possibilities and research questions are outlined, including possibilities in generative sound." @default.
- W4242263246 created "2022-05-12" @default.
- W4242263246 creator A5063340885 @default.
- W4242263246 date "2018-11-19" @default.
- W4242263246 modified "2023-09-28" @default.
- W4242263246 title "Sample-level sound synthesis with recurrent neural networks and conceptors" @default.
- W4242263246 doi "https://doi.org/10.7287/peerj.preprints.27361" @default.
- W4242263246 hasPublicationYear "2018" @default.
- W4242263246 type Work @default.
- W4242263246 citedByCount "0" @default.
- W4242263246 crossrefType "posted-content" @default.
- W4242263246 hasAuthorship W4242263246A5063340885 @default.
- W4242263246 hasBestOaLocation W42422632461 @default.
- W4242263246 hasConcept C104114177 @default.
- W4242263246 hasConcept C132459708 @default.
- W4242263246 hasConcept C134306372 @default.
- W4242263246 hasConcept C137800194 @default.
- W4242263246 hasConcept C147168706 @default.
- W4242263246 hasConcept C154945302 @default.
- W4242263246 hasConcept C185592680 @default.
- W4242263246 hasConcept C198531522 @default.
- W4242263246 hasConcept C28490314 @default.
- W4242263246 hasConcept C33923547 @default.
- W4242263246 hasConcept C41008148 @default.
- W4242263246 hasConcept C43617362 @default.
- W4242263246 hasConcept C50637493 @default.
- W4242263246 hasConcept C50644808 @default.
- W4242263246 hasConceptScore W4242263246C104114177 @default.
- W4242263246 hasConceptScore W4242263246C132459708 @default.
- W4242263246 hasConceptScore W4242263246C134306372 @default.
- W4242263246 hasConceptScore W4242263246C137800194 @default.
- W4242263246 hasConceptScore W4242263246C147168706 @default.
- W4242263246 hasConceptScore W4242263246C154945302 @default.
- W4242263246 hasConceptScore W4242263246C185592680 @default.
- W4242263246 hasConceptScore W4242263246C198531522 @default.
- W4242263246 hasConceptScore W4242263246C28490314 @default.
- W4242263246 hasConceptScore W4242263246C33923547 @default.
- W4242263246 hasConceptScore W4242263246C41008148 @default.
- W4242263246 hasConceptScore W4242263246C43617362 @default.
- W4242263246 hasConceptScore W4242263246C50637493 @default.
- W4242263246 hasConceptScore W4242263246C50644808 @default.
- W4242263246 hasLocation W42422632461 @default.
- W4242263246 hasLocation W42422632462 @default.
- W4242263246 hasOpenAccess W4242263246 @default.
- W4242263246 hasPrimaryLocation W42422632461 @default.
- W4242263246 hasRelatedWork W1487889217 @default.
- W4242263246 hasRelatedWork W2009459105 @default.
- W4242263246 hasRelatedWork W2122131974 @default.
- W4242263246 hasRelatedWork W2155370225 @default.
- W4242263246 hasRelatedWork W2333453008 @default.
- W4242263246 hasRelatedWork W2507865718 @default.
- W4242263246 hasRelatedWork W2808694371 @default.
- W4242263246 hasRelatedWork W2810624234 @default.
- W4242263246 hasRelatedWork W4224282912 @default.
- W4242263246 hasRelatedWork W51831678 @default.
- W4242263246 isParatext "false" @default.
- W4242263246 isRetracted "false" @default.
- W4242263246 workType "article" @default.