Matches in SemOpenAlex for { <https://semopenalex.org/work/W4242349648> ?p ?o ?g. }
- W4242349648 endingPage "46" @default.
- W4242349648 startingPage "15" @default.
- W4242349648 abstract "Ferroelectric phase transition can be well described by thermodynamic theory. Landau addressed this problem by considering free energy in the form of expansion of ferroelectric polarization, from which fundamental properties of the ferroelectric material such as polarization and dielectric permittivity can be derived. This chapter shows that the dielectric permittivity can be derived from second-order differentiation of Landau free energy with boundary conditions (without electric field). The temperature-dependent dielectric permittivity for ferroelectric materials following the first-order phase transition can thus be derived. When the authors investigate the ferroelectric domain structure and domain evolution under electric field or temperature change, a simulation method called phase field calculation is worth to be mentioned. Due to the nature of ferroelectric domains with different polarizations, the phase field calculation has also been well used to simulate domain structures and evolutions in ferroelectrics where different oriented ferroelectric domains can be treated as different phases." @default.
- W4242349648 created "2022-05-12" @default.
- W4242349648 date "2020-01-03" @default.
- W4242349648 modified "2023-09-27" @default.
- W4242349648 title "Introduction to Ferroelectrics" @default.
- W4242349648 cites W1542903812 @default.
- W4242349648 cites W1567056218 @default.
- W4242349648 cites W1574103125 @default.
- W4242349648 cites W1626346691 @default.
- W4242349648 cites W1965502119 @default.
- W4242349648 cites W1967154144 @default.
- W4242349648 cites W1969495305 @default.
- W4242349648 cites W1979323763 @default.
- W4242349648 cites W1988220602 @default.
- W4242349648 cites W2004653844 @default.
- W4242349648 cites W2010905139 @default.
- W4242349648 cites W2011611624 @default.
- W4242349648 cites W2013318038 @default.
- W4242349648 cites W2018376565 @default.
- W4242349648 cites W2018700227 @default.
- W4242349648 cites W2018904716 @default.
- W4242349648 cites W2021076903 @default.
- W4242349648 cites W2026331531 @default.
- W4242349648 cites W2040441590 @default.
- W4242349648 cites W2046647523 @default.
- W4242349648 cites W2047790392 @default.
- W4242349648 cites W2051863960 @default.
- W4242349648 cites W2052361285 @default.
- W4242349648 cites W2053642705 @default.
- W4242349648 cites W205675238 @default.
- W4242349648 cites W2065152771 @default.
- W4242349648 cites W2068209922 @default.
- W4242349648 cites W2071451684 @default.
- W4242349648 cites W2073423728 @default.
- W4242349648 cites W2073685053 @default.
- W4242349648 cites W2079893069 @default.
- W4242349648 cites W2085117196 @default.
- W4242349648 cites W2085475881 @default.
- W4242349648 cites W2088949408 @default.
- W4242349648 cites W2094546020 @default.
- W4242349648 cites W2104076547 @default.
- W4242349648 cites W2106218142 @default.
- W4242349648 cites W2115320167 @default.
- W4242349648 cites W2116286721 @default.
- W4242349648 cites W2124643090 @default.
- W4242349648 cites W2138323937 @default.
- W4242349648 cites W2143574528 @default.
- W4242349648 cites W2149255853 @default.
- W4242349648 cites W2149684810 @default.
- W4242349648 cites W2155047451 @default.
- W4242349648 cites W2166352301 @default.
- W4242349648 cites W2289657675 @default.
- W4242349648 cites W2320921553 @default.
- W4242349648 cites W2949075122 @default.
- W4242349648 cites W4234959647 @default.
- W4242349648 cites W4235062128 @default.
- W4242349648 cites W4235294510 @default.
- W4242349648 cites W4299677676 @default.
- W4242349648 cites W69719710 @default.
- W4242349648 doi "https://doi.org/10.1002/9783527815388.ch2" @default.
- W4242349648 hasPublicationYear "2020" @default.
- W4242349648 type Work @default.
- W4242349648 citedByCount "0" @default.
- W4242349648 crossrefType "other" @default.
- W4242349648 hasConcept C121332964 @default.
- W4242349648 hasConcept C133386390 @default.
- W4242349648 hasConcept C147789679 @default.
- W4242349648 hasConcept C149288129 @default.
- W4242349648 hasConcept C168651791 @default.
- W4242349648 hasConcept C185592680 @default.
- W4242349648 hasConcept C188324986 @default.
- W4242349648 hasConcept C192562407 @default.
- W4242349648 hasConcept C201144084 @default.
- W4242349648 hasConcept C205049153 @default.
- W4242349648 hasConcept C26873012 @default.
- W4242349648 hasConcept C44280652 @default.
- W4242349648 hasConcept C49040817 @default.
- W4242349648 hasConcept C60799052 @default.
- W4242349648 hasConcept C62520636 @default.
- W4242349648 hasConcept C79090758 @default.
- W4242349648 hasConceptScore W4242349648C121332964 @default.
- W4242349648 hasConceptScore W4242349648C133386390 @default.
- W4242349648 hasConceptScore W4242349648C147789679 @default.
- W4242349648 hasConceptScore W4242349648C149288129 @default.
- W4242349648 hasConceptScore W4242349648C168651791 @default.
- W4242349648 hasConceptScore W4242349648C185592680 @default.
- W4242349648 hasConceptScore W4242349648C188324986 @default.
- W4242349648 hasConceptScore W4242349648C192562407 @default.
- W4242349648 hasConceptScore W4242349648C201144084 @default.
- W4242349648 hasConceptScore W4242349648C205049153 @default.
- W4242349648 hasConceptScore W4242349648C26873012 @default.
- W4242349648 hasConceptScore W4242349648C44280652 @default.
- W4242349648 hasConceptScore W4242349648C49040817 @default.
- W4242349648 hasConceptScore W4242349648C60799052 @default.
- W4242349648 hasConceptScore W4242349648C62520636 @default.
- W4242349648 hasConceptScore W4242349648C79090758 @default.
- W4242349648 hasLocation W42423496481 @default.
- W4242349648 hasOpenAccess W4242349648 @default.