Matches in SemOpenAlex for { <https://semopenalex.org/work/W4243087897> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4243087897 endingPage "1037" @default.
- W4243087897 startingPage "1037" @default.
- W4243087897 abstract "Abstract Suppose we observe Y 1, …, YN , where Yi has the exponential density f(yi |θi ) = exp{ϕi ([yiθi – b(θi )]}c(yi, ϕi ). The parameters of interest are not the canonical parameters θi but the means μi = b′(θi ). In the usual generalized linear model (GLM) setup, suppose the means μ1, …, μN are believed to satisfy a specific p-dimensional GLM g(μi ) = xT iβ, where the link function g and the regression coefficients {xi } are known and the regression vector β is unknown. Two problems of interest are the assessment of the goodness of fit of the GLM and the estimation of the means μi . The approach to these problems is by the use of a Bayesian two-stage prior distribution, a generalization of a model used by Lindley and Smith (1972) in the normal mean-estimation problem. At the first stage of the model, we assign independent conjugate distributions to θ1, …, θN , where the prior means of the μi satisfy the GLM. There are p + 1 unknown hyperparameters in this specification, the elements of the regression parameter β and a precision parameter λ. At the second stage of the prior model, the hyperparameters β and λ are assigned noninformative distributions. The posterior distribution for the θi is expressible as π({θi } | data) = J π({θi } | data, β, λ)π{β, λ | data) dβ dλ. The posterior distribution of the θi given the hyperparameters β and λ is tractable, but the posterior distribution of β and λ is intractable. The focus of this article is on tractable accurate approximations to the posterior distribution of β and λ. These approximations give simple expressions for posterior moments of the hyperparameters λ and β and for posterior moments of the means μi . The accuracy of the approximate methods is investigated for binomial data in which the means are believed to satisfy a logistic model. A thorough evaluation of the methods is made for the simple exchangeable model. A more complicated logistic model is fit to data from Rosenberg (1962), and the usual frequentist inferences and inferences using the Bayesian hierarchical model are illustrated." @default.
- W4243087897 created "2022-05-12" @default.
- W4243087897 creator A5024128768 @default.
- W4243087897 date "1988-12-01" @default.
- W4243087897 modified "2023-10-18" @default.
- W4243087897 title "Computational Methods Using a Bayesian Hierarchical Generalized Linear Model" @default.
- W4243087897 doi "https://doi.org/10.2307/2290133" @default.
- W4243087897 hasPublicationYear "1988" @default.
- W4243087897 type Work @default.
- W4243087897 citedByCount "12" @default.
- W4243087897 countsByYear W42430878972012 @default.
- W4243087897 crossrefType "journal-article" @default.
- W4243087897 hasAuthorship W4243087897A5024128768 @default.
- W4243087897 hasConcept C105795698 @default.
- W4243087897 hasConcept C107673813 @default.
- W4243087897 hasConcept C11413529 @default.
- W4243087897 hasConcept C134306372 @default.
- W4243087897 hasConcept C160234255 @default.
- W4243087897 hasConcept C177148314 @default.
- W4243087897 hasConcept C26004113 @default.
- W4243087897 hasConcept C28826006 @default.
- W4243087897 hasConcept C33923547 @default.
- W4243087897 hasConcept C37903108 @default.
- W4243087897 hasConcept C41587187 @default.
- W4243087897 hasConcept C48921125 @default.
- W4243087897 hasConcept C55974624 @default.
- W4243087897 hasConcept C57830394 @default.
- W4243087897 hasConcept C83247935 @default.
- W4243087897 hasConcept C8642999 @default.
- W4243087897 hasConceptScore W4243087897C105795698 @default.
- W4243087897 hasConceptScore W4243087897C107673813 @default.
- W4243087897 hasConceptScore W4243087897C11413529 @default.
- W4243087897 hasConceptScore W4243087897C134306372 @default.
- W4243087897 hasConceptScore W4243087897C160234255 @default.
- W4243087897 hasConceptScore W4243087897C177148314 @default.
- W4243087897 hasConceptScore W4243087897C26004113 @default.
- W4243087897 hasConceptScore W4243087897C28826006 @default.
- W4243087897 hasConceptScore W4243087897C33923547 @default.
- W4243087897 hasConceptScore W4243087897C37903108 @default.
- W4243087897 hasConceptScore W4243087897C41587187 @default.
- W4243087897 hasConceptScore W4243087897C48921125 @default.
- W4243087897 hasConceptScore W4243087897C55974624 @default.
- W4243087897 hasConceptScore W4243087897C57830394 @default.
- W4243087897 hasConceptScore W4243087897C83247935 @default.
- W4243087897 hasConceptScore W4243087897C8642999 @default.
- W4243087897 hasIssue "404" @default.
- W4243087897 hasLocation W42430878971 @default.
- W4243087897 hasOpenAccess W4243087897 @default.
- W4243087897 hasPrimaryLocation W42430878971 @default.
- W4243087897 hasRelatedWork W1995049972 @default.
- W4243087897 hasRelatedWork W2005820577 @default.
- W4243087897 hasRelatedWork W2011960472 @default.
- W4243087897 hasRelatedWork W2017500114 @default.
- W4243087897 hasRelatedWork W2044936176 @default.
- W4243087897 hasRelatedWork W2080850894 @default.
- W4243087897 hasRelatedWork W2085062371 @default.
- W4243087897 hasRelatedWork W2171321819 @default.
- W4243087897 hasRelatedWork W2558677930 @default.
- W4243087897 hasRelatedWork W2765193704 @default.
- W4243087897 hasVolume "83" @default.
- W4243087897 isParatext "false" @default.
- W4243087897 isRetracted "false" @default.
- W4243087897 workType "article" @default.