Matches in SemOpenAlex for { <https://semopenalex.org/work/W4243363890> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4243363890 endingPage "3039" @default.
- W4243363890 startingPage "3035" @default.
- W4243363890 abstract "in the last years, the relevance of sentiment analysis is broad and dominant. The capability to take out insights from social data is a tradition that is being extensively accepted by all over globe. Sentiment Analysis has turn out to be a hot-trend issue of technical and marketplace research in the area of Natural Language Processing (NLP) and Machine Learning. Sentiment analysis is enormously useful in social media supervising as it permits us to expand an impression of the wider open estimation behind definite topics. Investigation of social media streams is typically limited to just essential sentiment analysis and count based metrics. This is of the same kind to just scratching the outside and missing out on those elevated value insight that is ahead of you to be discovered. There’s a lot of effort to be done, but perfections are being prepared every day. It is a way to appraise on paper or verbal language to settle on if the expression is favorable, unfavorable, or unbiased, and to what level. Today’s algorithm-based sentiment analysis tools can touch vast amount of client response constantly and precisely. Balancing with text analytics, sentiment analysis exposes the customer’s estimation concerning topics ranging from your goods and services to your position, your advertisements, or even your challengers. These efforts scrutinize the crisis of studying texts, like posts and reviews, uploaded by user on Twitter. The Support Vector Machine (SVM), k-nearest neighbors algorithm (KNN) and proposed optimized feature sets model is offered to progression the tweet features and to recognize the out of sight sentiments from these tweets. These essential concepts when used in combinations become a very significant tool for analyzing millions of variety conversations with human echelon accurateness. The projected optimized feature sets model Sentiment Analysis exercise the assessment metrics of Precision, Recall, F-score, and Accuracy. Also, average measures weighted F1-scores are constructive for categorization of Positive, Negative and Neutral multi-class problems. The running time of the technique is evaluates by accomplishing diverse methods in the same investigational setup consisting a cluster of 8 nodes. Planned optimized feature sets model Sentiment Analysis reachs 82 % accuracy as compare with SVM 78.6 % and KNN 75 %. Further, while analyzing sentiments of tweets we have measured only tweets in English acknowledged by Twitter streaming API." @default.
- W4243363890 created "2022-05-12" @default.
- W4243363890 creator A5080923623 @default.
- W4243363890 creator A5090595603 @default.
- W4243363890 date "2019-09-30" @default.
- W4243363890 modified "2023-10-14" @default.
- W4243363890 title "Sentiment Analysis using Optimized Feature Sets in Different Twitter Dataset Domains" @default.
- W4243363890 doi "https://doi.org/10.35940/ijitee.k2195.0981119" @default.
- W4243363890 hasPublicationYear "2019" @default.
- W4243363890 type Work @default.
- W4243363890 citedByCount "1" @default.
- W4243363890 countsByYear W42433638902020 @default.
- W4243363890 crossrefType "journal-article" @default.
- W4243363890 hasAuthorship W4243363890A5080923623 @default.
- W4243363890 hasAuthorship W4243363890A5090595603 @default.
- W4243363890 hasBestOaLocation W42433638901 @default.
- W4243363890 hasConcept C118487528 @default.
- W4243363890 hasConcept C119857082 @default.
- W4243363890 hasConcept C12267149 @default.
- W4243363890 hasConcept C136764020 @default.
- W4243363890 hasConcept C138885662 @default.
- W4243363890 hasConcept C154945302 @default.
- W4243363890 hasConcept C158154518 @default.
- W4243363890 hasConcept C17744445 @default.
- W4243363890 hasConcept C199539241 @default.
- W4243363890 hasConcept C2522767166 @default.
- W4243363890 hasConcept C2775899829 @default.
- W4243363890 hasConcept C2776401178 @default.
- W4243363890 hasConcept C41008148 @default.
- W4243363890 hasConcept C41895202 @default.
- W4243363890 hasConcept C518677369 @default.
- W4243363890 hasConcept C66402592 @default.
- W4243363890 hasConcept C71901391 @default.
- W4243363890 hasConcept C71924100 @default.
- W4243363890 hasConcept C79158427 @default.
- W4243363890 hasConceptScore W4243363890C118487528 @default.
- W4243363890 hasConceptScore W4243363890C119857082 @default.
- W4243363890 hasConceptScore W4243363890C12267149 @default.
- W4243363890 hasConceptScore W4243363890C136764020 @default.
- W4243363890 hasConceptScore W4243363890C138885662 @default.
- W4243363890 hasConceptScore W4243363890C154945302 @default.
- W4243363890 hasConceptScore W4243363890C158154518 @default.
- W4243363890 hasConceptScore W4243363890C17744445 @default.
- W4243363890 hasConceptScore W4243363890C199539241 @default.
- W4243363890 hasConceptScore W4243363890C2522767166 @default.
- W4243363890 hasConceptScore W4243363890C2775899829 @default.
- W4243363890 hasConceptScore W4243363890C2776401178 @default.
- W4243363890 hasConceptScore W4243363890C41008148 @default.
- W4243363890 hasConceptScore W4243363890C41895202 @default.
- W4243363890 hasConceptScore W4243363890C518677369 @default.
- W4243363890 hasConceptScore W4243363890C66402592 @default.
- W4243363890 hasConceptScore W4243363890C71901391 @default.
- W4243363890 hasConceptScore W4243363890C71924100 @default.
- W4243363890 hasConceptScore W4243363890C79158427 @default.
- W4243363890 hasIssue "11" @default.
- W4243363890 hasLocation W42433638901 @default.
- W4243363890 hasOpenAccess W4243363890 @default.
- W4243363890 hasPrimaryLocation W42433638901 @default.
- W4243363890 hasRelatedWork W264248106 @default.
- W4243363890 hasRelatedWork W2748952813 @default.
- W4243363890 hasRelatedWork W2785337750 @default.
- W4243363890 hasRelatedWork W2951078743 @default.
- W4243363890 hasRelatedWork W3046252353 @default.
- W4243363890 hasRelatedWork W3158293012 @default.
- W4243363890 hasRelatedWork W3195540305 @default.
- W4243363890 hasRelatedWork W4210372816 @default.
- W4243363890 hasRelatedWork W4211036734 @default.
- W4243363890 hasRelatedWork W4289106776 @default.
- W4243363890 hasVolume "8" @default.
- W4243363890 isParatext "false" @default.
- W4243363890 isRetracted "false" @default.
- W4243363890 workType "article" @default.