Matches in SemOpenAlex for { <https://semopenalex.org/work/W4243422210> ?p ?o ?g. }
- W4243422210 endingPage "75" @default.
- W4243422210 startingPage "70" @default.
- W4243422210 abstract "T-lymphocyte (T-cell) is a very important component in human immune system. T-cell epitopes can be used for the accurately monitoring the immune responses which activation by major histocompatibility complex (MHC), and rationally designing vaccines. Therefore, accurate prediction of T-cell epitopes is crucial for vaccine development and clinical immunology. In current study, two types peptide features, i.e., amino acid properties and chemical molecular features were used for the T-cell epitopes peptide representation. Based on these features, random forest (RF) algorithm, a powerful machine learning algorithm, was used to classify T-cell epitopes and non-T-cell epitopes. The classification accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and area under the curve (AUC) values for proposed method are 97.54%, 97.22%, 97.60%, 0.9193, and 0.9868, respectively. These results indicate that current method based on the combined features and RF is effective for T-cell epitopes prediction." @default.
- W4243422210 created "2022-05-12" @default.
- W4243422210 creator A5004690469 @default.
- W4243422210 creator A5012489593 @default.
- W4243422210 creator A5017164730 @default.
- W4243422210 creator A5024370786 @default.
- W4243422210 creator A5080576150 @default.
- W4243422210 creator A5087480048 @default.
- W4243422210 date "2013-12-01" @default.
- W4243422210 modified "2023-10-18" @default.
- W4243422210 title "Using random forest to classify T-cell epitopes based on amino acid properties and molecular features" @default.
- W4243422210 cites W1549641435 @default.
- W4243422210 cites W1963917946 @default.
- W4243422210 cites W1994048581 @default.
- W4243422210 cites W1999022648 @default.
- W4243422210 cites W2004822259 @default.
- W4243422210 cites W2035194338 @default.
- W4243422210 cites W2043338013 @default.
- W4243422210 cites W2059853480 @default.
- W4243422210 cites W2062018073 @default.
- W4243422210 cites W2064736878 @default.
- W4243422210 cites W2068353613 @default.
- W4243422210 cites W2072784497 @default.
- W4243422210 cites W2080725232 @default.
- W4243422210 cites W2087012441 @default.
- W4243422210 cites W2095299473 @default.
- W4243422210 cites W2099485004 @default.
- W4243422210 cites W2109553965 @default.
- W4243422210 cites W2111928688 @default.
- W4243422210 cites W2117333383 @default.
- W4243422210 cites W2125732073 @default.
- W4243422210 cites W2127571938 @default.
- W4243422210 cites W2142441262 @default.
- W4243422210 cites W2152360551 @default.
- W4243422210 cites W2153268005 @default.
- W4243422210 cites W2159767366 @default.
- W4243422210 cites W2160583217 @default.
- W4243422210 cites W2164492849 @default.
- W4243422210 cites W2214061650 @default.
- W4243422210 cites W2400696435 @default.
- W4243422210 cites W2911964244 @default.
- W4243422210 doi "https://doi.org/10.1016/j.aca.2013.10.003" @default.
- W4243422210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24267065" @default.
- W4243422210 hasPublicationYear "2013" @default.
- W4243422210 type Work @default.
- W4243422210 citedByCount "13" @default.
- W4243422210 countsByYear W42434222102014 @default.
- W4243422210 countsByYear W42434222102015 @default.
- W4243422210 countsByYear W42434222102016 @default.
- W4243422210 countsByYear W42434222102017 @default.
- W4243422210 countsByYear W42434222102018 @default.
- W4243422210 countsByYear W42434222102019 @default.
- W4243422210 countsByYear W42434222102020 @default.
- W4243422210 countsByYear W42434222102022 @default.
- W4243422210 countsByYear W42434222102023 @default.
- W4243422210 crossrefType "journal-article" @default.
- W4243422210 hasAuthorship W4243422210A5004690469 @default.
- W4243422210 hasAuthorship W4243422210A5012489593 @default.
- W4243422210 hasAuthorship W4243422210A5017164730 @default.
- W4243422210 hasAuthorship W4243422210A5024370786 @default.
- W4243422210 hasAuthorship W4243422210A5080576150 @default.
- W4243422210 hasAuthorship W4243422210A5087480048 @default.
- W4243422210 hasConcept C147483822 @default.
- W4243422210 hasConcept C154945302 @default.
- W4243422210 hasConcept C169258074 @default.
- W4243422210 hasConcept C185592680 @default.
- W4243422210 hasConcept C195616568 @default.
- W4243422210 hasConcept C203014093 @default.
- W4243422210 hasConcept C207936829 @default.
- W4243422210 hasConcept C2776090121 @default.
- W4243422210 hasConcept C41008148 @default.
- W4243422210 hasConcept C70721500 @default.
- W4243422210 hasConcept C86803240 @default.
- W4243422210 hasConcept C8891405 @default.
- W4243422210 hasConceptScore W4243422210C147483822 @default.
- W4243422210 hasConceptScore W4243422210C154945302 @default.
- W4243422210 hasConceptScore W4243422210C169258074 @default.
- W4243422210 hasConceptScore W4243422210C185592680 @default.
- W4243422210 hasConceptScore W4243422210C195616568 @default.
- W4243422210 hasConceptScore W4243422210C203014093 @default.
- W4243422210 hasConceptScore W4243422210C207936829 @default.
- W4243422210 hasConceptScore W4243422210C2776090121 @default.
- W4243422210 hasConceptScore W4243422210C41008148 @default.
- W4243422210 hasConceptScore W4243422210C70721500 @default.
- W4243422210 hasConceptScore W4243422210C86803240 @default.
- W4243422210 hasConceptScore W4243422210C8891405 @default.
- W4243422210 hasLocation W42434222101 @default.
- W4243422210 hasLocation W42434222102 @default.
- W4243422210 hasOpenAccess W4243422210 @default.
- W4243422210 hasPrimaryLocation W42434222101 @default.
- W4243422210 hasRelatedWork W1558421445 @default.
- W4243422210 hasRelatedWork W1587907511 @default.
- W4243422210 hasRelatedWork W1596377987 @default.
- W4243422210 hasRelatedWork W1991276946 @default.
- W4243422210 hasRelatedWork W2068694905 @default.
- W4243422210 hasRelatedWork W2414203182 @default.
- W4243422210 hasRelatedWork W26090337 @default.
- W4243422210 hasRelatedWork W2953549230 @default.