Matches in SemOpenAlex for { <https://semopenalex.org/work/W4243727706> ?p ?o ?g. }
- W4243727706 abstract "<sec> <title>BACKGROUND</title> The cluster detection of health care–associated infections (HAIs) is crucial for identifying HAI outbreaks in the early stages. </sec> <sec> <title>OBJECTIVE</title> We aimed to verify whether multisource surveillance based on the process data in an area network can be effective in detecting HAI clusters. </sec> <sec> <title>METHODS</title> We retrospectively analyzed the incidence of HAIs and 3 indicators of process data relative to infection, namely, antibiotic utilization rate in combination, inspection rate of bacterial specimens, and positive rate of bacterial specimens, from 4 independent high-risk units in a tertiary hospital in China. We utilized the Shewhart warning model to detect the peaks of the time-series data. Subsequently, we designed 5 surveillance strategies based on the process data for the HAI cluster detection: (1) antibiotic utilization rate in combination only, (2) inspection rate of bacterial specimens only, (3) positive rate of bacterial specimens only, (4) antibiotic utilization rate in combination + inspection rate of bacterial specimens + positive rate of bacterial specimens in parallel, and (5) antibiotic utilization rate in combination + inspection rate of bacterial specimens + positive rate of bacterial specimens in series. We used the receiver operating characteristic (ROC) curve and Youden index to evaluate the warning performance of these surveillance strategies for the detection of HAI clusters. </sec> <sec> <title>RESULTS</title> The ROC curves of the 5 surveillance strategies were located above the standard line, and the area under the curve of the ROC was larger in the parallel strategy than in the series strategy and the single-indicator strategies. The optimal Youden indexes were 0.48 (95% CI 0.29-0.67) at a threshold of 1.5 in the antibiotic utilization rate in combination–only strategy, 0.49 (95% CI 0.45-0.53) at a threshold of 0.5 in the inspection rate of bacterial specimens–only strategy, 0.50 (95% CI 0.28-0.71) at a threshold of 1.1 in the positive rate of bacterial specimens–only strategy, 0.63 (95% CI 0.49-0.77) at a threshold of 2.6 in the parallel strategy, and 0.32 (95% CI 0.00-0.65) at a threshold of 0.0 in the series strategy. The warning performance of the parallel strategy was greater than that of the single-indicator strategies when the threshold exceeded 1.5. </sec> <sec> <title>CONCLUSIONS</title> The multisource surveillance of process data in the area network is an effective method for the early detection of HAI clusters. The combination of multisource data and the threshold of the warning model are 2 important factors that influence the performance of the model. </sec>" @default.
- W4243727706 created "2022-05-12" @default.
- W4243727706 creator A5000172755 @default.
- W4243727706 creator A5006058281 @default.
- W4243727706 creator A5026679749 @default.
- W4243727706 creator A5050315762 @default.
- W4243727706 creator A5051068710 @default.
- W4243727706 creator A5067231150 @default.
- W4243727706 creator A5068922710 @default.
- W4243727706 creator A5075653752 @default.
- W4243727706 creator A5081068671 @default.
- W4243727706 date "2019-11-05" @default.
- W4243727706 modified "2023-10-14" @default.
- W4243727706 title "Automated Cluster Detection of Health Care–Associated Infection Based on the Multisource Surveillance of Process Data in the Area Network: Retrospective Study of Algorithm Development and Validation (Preprint)" @default.
- W4243727706 cites W1986486009 @default.
- W4243727706 cites W1988778714 @default.
- W4243727706 cites W2050948290 @default.
- W4243727706 cites W2071785290 @default.
- W4243727706 cites W2080893866 @default.
- W4243727706 cites W2091694145 @default.
- W4243727706 cites W2093889817 @default.
- W4243727706 cites W2113701842 @default.
- W4243727706 cites W2139500831 @default.
- W4243727706 cites W2199828154 @default.
- W4243727706 cites W2209764254 @default.
- W4243727706 cites W2336597502 @default.
- W4243727706 cites W2608335508 @default.
- W4243727706 cites W2809307211 @default.
- W4243727706 cites W2917252620 @default.
- W4243727706 cites W4206137588 @default.
- W4243727706 cites W4240800905 @default.
- W4243727706 doi "https://doi.org/10.2196/preprints.16901" @default.
- W4243727706 hasPublicationYear "2019" @default.
- W4243727706 type Work @default.
- W4243727706 citedByCount "0" @default.
- W4243727706 crossrefType "posted-content" @default.
- W4243727706 hasAuthorship W4243727706A5000172755 @default.
- W4243727706 hasAuthorship W4243727706A5006058281 @default.
- W4243727706 hasAuthorship W4243727706A5026679749 @default.
- W4243727706 hasAuthorship W4243727706A5050315762 @default.
- W4243727706 hasAuthorship W4243727706A5051068710 @default.
- W4243727706 hasAuthorship W4243727706A5067231150 @default.
- W4243727706 hasAuthorship W4243727706A5068922710 @default.
- W4243727706 hasAuthorship W4243727706A5075653752 @default.
- W4243727706 hasAuthorship W4243727706A5081068671 @default.
- W4243727706 hasBestOaLocation W42437277062 @default.
- W4243727706 hasConcept C111919701 @default.
- W4243727706 hasConcept C11413529 @default.
- W4243727706 hasConcept C124101348 @default.
- W4243727706 hasConcept C126322002 @default.
- W4243727706 hasConcept C154945302 @default.
- W4243727706 hasConcept C164866538 @default.
- W4243727706 hasConcept C196985124 @default.
- W4243727706 hasConcept C199360897 @default.
- W4243727706 hasConcept C2524010 @default.
- W4243727706 hasConcept C29825287 @default.
- W4243727706 hasConcept C33923547 @default.
- W4243727706 hasConcept C41008148 @default.
- W4243727706 hasConcept C43346845 @default.
- W4243727706 hasConcept C58471807 @default.
- W4243727706 hasConcept C61511704 @default.
- W4243727706 hasConcept C71924100 @default.
- W4243727706 hasConcept C74746147 @default.
- W4243727706 hasConcept C76155785 @default.
- W4243727706 hasConcept C95922358 @default.
- W4243727706 hasConcept C98045186 @default.
- W4243727706 hasConceptScore W4243727706C111919701 @default.
- W4243727706 hasConceptScore W4243727706C11413529 @default.
- W4243727706 hasConceptScore W4243727706C124101348 @default.
- W4243727706 hasConceptScore W4243727706C126322002 @default.
- W4243727706 hasConceptScore W4243727706C154945302 @default.
- W4243727706 hasConceptScore W4243727706C164866538 @default.
- W4243727706 hasConceptScore W4243727706C196985124 @default.
- W4243727706 hasConceptScore W4243727706C199360897 @default.
- W4243727706 hasConceptScore W4243727706C2524010 @default.
- W4243727706 hasConceptScore W4243727706C29825287 @default.
- W4243727706 hasConceptScore W4243727706C33923547 @default.
- W4243727706 hasConceptScore W4243727706C41008148 @default.
- W4243727706 hasConceptScore W4243727706C43346845 @default.
- W4243727706 hasConceptScore W4243727706C58471807 @default.
- W4243727706 hasConceptScore W4243727706C61511704 @default.
- W4243727706 hasConceptScore W4243727706C71924100 @default.
- W4243727706 hasConceptScore W4243727706C74746147 @default.
- W4243727706 hasConceptScore W4243727706C76155785 @default.
- W4243727706 hasConceptScore W4243727706C95922358 @default.
- W4243727706 hasConceptScore W4243727706C98045186 @default.
- W4243727706 hasLocation W42437277061 @default.
- W4243727706 hasLocation W42437277062 @default.
- W4243727706 hasOpenAccess W4243727706 @default.
- W4243727706 hasPrimaryLocation W42437277061 @default.
- W4243727706 hasRelatedWork W1026887 @default.
- W4243727706 hasRelatedWork W1849215 @default.
- W4243727706 hasRelatedWork W2283060 @default.
- W4243727706 hasRelatedWork W2381638 @default.
- W4243727706 hasRelatedWork W2543222 @default.
- W4243727706 hasRelatedWork W2766859 @default.
- W4243727706 hasRelatedWork W562665 @default.
- W4243727706 hasRelatedWork W6602908 @default.
- W4243727706 hasRelatedWork W747274 @default.
- W4243727706 hasRelatedWork W845024 @default.