Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244003178> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4244003178 abstract "Abstract Background: Accurate preoperative planning is an important step for accurate reconstruction in total hip arthroplasty (THA). Presently, preoperative planning is completed using either a two-dimensional (2D) template or three-dimensional (3D) mimics software. With the development of artificial intelligence (AI) technology, AI HIP, a planning software based on AI technology can quickly and automatically identify acetabular and femur morphology, and automatically match the optimal prosthesis size. However, the accuracy and feasibility of its clinical application still needs to be further verified. The purposes of this study were to investigate the accuracy and time efficiency of AI HIP in preoperative planning for primary THA, compared with 3D mimics software and 2D digital template; and further analyze the factors that influence the accuracy of AI HIP. Methods: A prospective study was conducted on 53 consecutive patients (59 hips) undergoing primary THA with cementless prostheses in our department. All preoperative planning was completed using AI HIP as well as 3D mimics and 2D digital template. The predicted component size and the actual implantation results were compared to determine the accuracy. The templating time was compared to determine the efficiency. Furthermore, the potential factors influencing the accuracy of AI HIP were analyzed including sex, body mass index (BMI), and hip dysplasia. Results: The accuracy in predicting the acetabular cup and femoral stem was 74.58% and 71.19%, respectively, for AI HIP; 71.19% (P = 0.743) and 76.27% (P = 0.468), respectively, for 3D mimics; 40.68% (P < 0.001) and 49.15% (P = 0.021), respectively, for 2D digital templating. The templating time using AI HIP was 3.91±0.64 min, which was equivalent to 2D digital templates (2.96±0.48 min, P < 0.001), but shorter than 3D mimics (32.07±2.41 min, P < 0.001). Acetabular dysplasia(P = 0.021), rather than sex and BMI, was an influential factor in the accuracy of AI HIP templating. Compared to patients with developmental dysplasia of the hip (DDH), the accuracy of acetabular cup in the non-DDH group was better (P = 0.021), but the difference in the accuracy of the femoral stem between the two groups was statistically insignificant (P = 0.062). Conclusion: AI HIP showed excellent reliability for component size in THA. Acetabular dysplasia may affect the accuracy of AI HIP templating." @default.
- W4244003178 created "2022-05-12" @default.
- W4244003178 creator A5001854613 @default.
- W4244003178 creator A5002790856 @default.
- W4244003178 creator A5013539466 @default.
- W4244003178 creator A5038845149 @default.
- W4244003178 creator A5046481680 @default.
- W4244003178 creator A5080119140 @default.
- W4244003178 creator A5086393428 @default.
- W4244003178 creator A5087728277 @default.
- W4244003178 date "2020-12-08" @default.
- W4244003178 modified "2023-10-18" @default.
- W4244003178 title "Value of 3D Preoperative Planning for Primary Total Hip Arthroplasty Based on Artificial Intelligence Technology" @default.
- W4244003178 doi "https://doi.org/10.21203/rs.3.rs-120578/v1" @default.
- W4244003178 hasPublicationYear "2020" @default.
- W4244003178 type Work @default.
- W4244003178 citedByCount "1" @default.
- W4244003178 countsByYear W42440031782023 @default.
- W4244003178 crossrefType "posted-content" @default.
- W4244003178 hasAuthorship W4244003178A5001854613 @default.
- W4244003178 hasAuthorship W4244003178A5002790856 @default.
- W4244003178 hasAuthorship W4244003178A5013539466 @default.
- W4244003178 hasAuthorship W4244003178A5038845149 @default.
- W4244003178 hasAuthorship W4244003178A5046481680 @default.
- W4244003178 hasAuthorship W4244003178A5080119140 @default.
- W4244003178 hasAuthorship W4244003178A5086393428 @default.
- W4244003178 hasAuthorship W4244003178A5087728277 @default.
- W4244003178 hasBestOaLocation W42440031781 @default.
- W4244003178 hasConcept C141071460 @default.
- W4244003178 hasConcept C2778336525 @default.
- W4244003178 hasConcept C2778715743 @default.
- W4244003178 hasConcept C2779370443 @default.
- W4244003178 hasConcept C2780554211 @default.
- W4244003178 hasConcept C2992051495 @default.
- W4244003178 hasConcept C3019025420 @default.
- W4244003178 hasConcept C71924100 @default.
- W4244003178 hasConceptScore W4244003178C141071460 @default.
- W4244003178 hasConceptScore W4244003178C2778336525 @default.
- W4244003178 hasConceptScore W4244003178C2778715743 @default.
- W4244003178 hasConceptScore W4244003178C2779370443 @default.
- W4244003178 hasConceptScore W4244003178C2780554211 @default.
- W4244003178 hasConceptScore W4244003178C2992051495 @default.
- W4244003178 hasConceptScore W4244003178C3019025420 @default.
- W4244003178 hasConceptScore W4244003178C71924100 @default.
- W4244003178 hasLocation W42440031781 @default.
- W4244003178 hasLocation W42440031782 @default.
- W4244003178 hasLocation W42440031783 @default.
- W4244003178 hasOpenAccess W4244003178 @default.
- W4244003178 hasPrimaryLocation W42440031781 @default.
- W4244003178 hasRelatedWork W1966413636 @default.
- W4244003178 hasRelatedWork W2013222506 @default.
- W4244003178 hasRelatedWork W203416351 @default.
- W4244003178 hasRelatedWork W2273822454 @default.
- W4244003178 hasRelatedWork W2394504308 @default.
- W4244003178 hasRelatedWork W2471965302 @default.
- W4244003178 hasRelatedWork W3132986271 @default.
- W4244003178 hasRelatedWork W4233444637 @default.
- W4244003178 hasRelatedWork W4254686672 @default.
- W4244003178 hasRelatedWork W84991176 @default.
- W4244003178 isParatext "false" @default.
- W4244003178 isRetracted "false" @default.
- W4244003178 workType "article" @default.