Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244110343> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4244110343 abstract "We consider a fully‐Bayesian approach to using mixture models in pattern classification problems. From a Bayesian point of view, classification should be done by integrating over the posterior distribution for the model parameters (including the number of components in the mixture) given previous observations.Although it is relatively easy to compute the value of the joint probability density of the observed data and a particular choice of model parameters, it is usually difficult to integrate over the whole distribution because of the high dimensionality of the parameter space. Most current methods using mixture models settle for finding a mode of the posterior distribution using the Expectation Maximization (EM) algorithm. But, much more can be learned about the posterior distribution. We explore the multi‐state MCMC methods introduced by Skilling and show how these methods can be applied to Gaussian mixture models. In addition, we examine genetic algorithms, which are most often used as optimization algorithms. We show how these algorithms can be adapted to act as multi‐state MCMC algorithms, as suggested by MacKay." @default.
- W4244110343 created "2022-05-12" @default.
- W4244110343 creator A5025850503 @default.
- W4244110343 date "2004-01-01" @default.
- W4244110343 modified "2023-09-25" @default.
- W4244110343 title "Approximating Posterior Distributions for Mixture-Model Parameters" @default.
- W4244110343 doi "https://doi.org/10.1063/1.1835242" @default.
- W4244110343 hasPublicationYear "2004" @default.
- W4244110343 type Work @default.
- W4244110343 citedByCount "0" @default.
- W4244110343 crossrefType "proceedings-article" @default.
- W4244110343 hasAuthorship W4244110343A5025850503 @default.
- W4244110343 hasConcept C105795698 @default.
- W4244110343 hasConcept C107673813 @default.
- W4244110343 hasConcept C111030470 @default.
- W4244110343 hasConcept C111350023 @default.
- W4244110343 hasConcept C11413529 @default.
- W4244110343 hasConcept C126255220 @default.
- W4244110343 hasConcept C153180895 @default.
- W4244110343 hasConcept C154945302 @default.
- W4244110343 hasConcept C160234255 @default.
- W4244110343 hasConcept C182081679 @default.
- W4244110343 hasConcept C191413810 @default.
- W4244110343 hasConcept C197055811 @default.
- W4244110343 hasConcept C2524010 @default.
- W4244110343 hasConcept C28719098 @default.
- W4244110343 hasConcept C33923547 @default.
- W4244110343 hasConcept C37903108 @default.
- W4244110343 hasConcept C41008148 @default.
- W4244110343 hasConcept C49781872 @default.
- W4244110343 hasConcept C56672385 @default.
- W4244110343 hasConcept C57830394 @default.
- W4244110343 hasConcept C61224824 @default.
- W4244110343 hasConcept C67926830 @default.
- W4244110343 hasConcept C83247935 @default.
- W4244110343 hasConceptScore W4244110343C105795698 @default.
- W4244110343 hasConceptScore W4244110343C107673813 @default.
- W4244110343 hasConceptScore W4244110343C111030470 @default.
- W4244110343 hasConceptScore W4244110343C111350023 @default.
- W4244110343 hasConceptScore W4244110343C11413529 @default.
- W4244110343 hasConceptScore W4244110343C126255220 @default.
- W4244110343 hasConceptScore W4244110343C153180895 @default.
- W4244110343 hasConceptScore W4244110343C154945302 @default.
- W4244110343 hasConceptScore W4244110343C160234255 @default.
- W4244110343 hasConceptScore W4244110343C182081679 @default.
- W4244110343 hasConceptScore W4244110343C191413810 @default.
- W4244110343 hasConceptScore W4244110343C197055811 @default.
- W4244110343 hasConceptScore W4244110343C2524010 @default.
- W4244110343 hasConceptScore W4244110343C28719098 @default.
- W4244110343 hasConceptScore W4244110343C33923547 @default.
- W4244110343 hasConceptScore W4244110343C37903108 @default.
- W4244110343 hasConceptScore W4244110343C41008148 @default.
- W4244110343 hasConceptScore W4244110343C49781872 @default.
- W4244110343 hasConceptScore W4244110343C56672385 @default.
- W4244110343 hasConceptScore W4244110343C57830394 @default.
- W4244110343 hasConceptScore W4244110343C61224824 @default.
- W4244110343 hasConceptScore W4244110343C67926830 @default.
- W4244110343 hasConceptScore W4244110343C83247935 @default.
- W4244110343 hasLocation W42441103431 @default.
- W4244110343 hasOpenAccess W4244110343 @default.
- W4244110343 hasPrimaryLocation W42441103431 @default.
- W4244110343 hasRelatedWork W134473611 @default.
- W4244110343 hasRelatedWork W2032094637 @default.
- W4244110343 hasRelatedWork W2060399680 @default.
- W4244110343 hasRelatedWork W2793674706 @default.
- W4244110343 hasRelatedWork W2887424114 @default.
- W4244110343 hasRelatedWork W2964008789 @default.
- W4244110343 hasRelatedWork W2994316600 @default.
- W4244110343 hasRelatedWork W3124618466 @default.
- W4244110343 hasRelatedWork W4297848738 @default.
- W4244110343 hasRelatedWork W4312689073 @default.
- W4244110343 isParatext "false" @default.
- W4244110343 isRetracted "false" @default.
- W4244110343 workType "article" @default.