Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244120594> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4244120594 endingPage "605" @default.
- W4244120594 startingPage "605" @default.
- W4244120594 abstract "Question: Is it possible to mathematically classify relevés into vegetation types on the basis of their average indicator values, including the uncertainty of the classification? Location: The Netherlands. Method: A large relevé database was used to develop a method for predicting vegetation types based on indicator values. First, each relevé was classified into a phytosociological association on the basis of its species composition. Additionally, mean indicator values for moisture, nutrients and acidity were computed for each relevé. Thus, the position of each classified relevé was obtained in a three-dimensional space of indicator values. Fitting the data to so called Gaussian Mixture Models yielded densities of associations as a function of indicator values. Finally, these density functions were used to predict the Bayesian occurrence probabilities of associations for known indicator values. Validation of predictions was performed by using a randomly chosen half of the database for the calibration of densities and the other half for the validation of predicted associations. Results and Conclusions: With indicator values, most reléves were classified correctly into vegetation types at the association level. This was shown using confusion matrices that relate (1) the number of relevés classified into associations based on species composition to (2) those based on indicator values. Misclassified relevés belonged to ecologically similar associations. The method seems very suitable for predictive vegetation models." @default.
- W4244120594 created "2022-05-12" @default.
- W4244120594 creator A5034229024 @default.
- W4244120594 creator A5035095376 @default.
- W4244120594 creator A5050782107 @default.
- W4244120594 creator A5053540855 @default.
- W4244120594 creator A5090614175 @default.
- W4244120594 date "2007-01-01" @default.
- W4244120594 modified "2023-09-26" @default.
- W4244120594 title "Bayesian classification of vegetation types with Gaussian mixture density fitting to indicator values" @default.
- W4244120594 cites W2488678869 @default.
- W4244120594 doi "https://doi.org/10.1658/1100-9233(2007)18[605:bcovtw]2.0.co;2" @default.
- W4244120594 hasPublicationYear "2007" @default.
- W4244120594 type Work @default.
- W4244120594 citedByCount "0" @default.
- W4244120594 crossrefType "journal-article" @default.
- W4244120594 hasAuthorship W4244120594A5034229024 @default.
- W4244120594 hasAuthorship W4244120594A5035095376 @default.
- W4244120594 hasAuthorship W4244120594A5050782107 @default.
- W4244120594 hasAuthorship W4244120594A5053540855 @default.
- W4244120594 hasAuthorship W4244120594A5090614175 @default.
- W4244120594 hasBestOaLocation W42441205942 @default.
- W4244120594 hasConcept C105795698 @default.
- W4244120594 hasConcept C107673813 @default.
- W4244120594 hasConcept C142724271 @default.
- W4244120594 hasConcept C14898019 @default.
- W4244120594 hasConcept C165838908 @default.
- W4244120594 hasConcept C18903297 @default.
- W4244120594 hasConcept C2776133958 @default.
- W4244120594 hasConcept C33923547 @default.
- W4244120594 hasConcept C39432304 @default.
- W4244120594 hasConcept C61224824 @default.
- W4244120594 hasConcept C71924100 @default.
- W4244120594 hasConcept C86803240 @default.
- W4244120594 hasConceptScore W4244120594C105795698 @default.
- W4244120594 hasConceptScore W4244120594C107673813 @default.
- W4244120594 hasConceptScore W4244120594C142724271 @default.
- W4244120594 hasConceptScore W4244120594C14898019 @default.
- W4244120594 hasConceptScore W4244120594C165838908 @default.
- W4244120594 hasConceptScore W4244120594C18903297 @default.
- W4244120594 hasConceptScore W4244120594C2776133958 @default.
- W4244120594 hasConceptScore W4244120594C33923547 @default.
- W4244120594 hasConceptScore W4244120594C39432304 @default.
- W4244120594 hasConceptScore W4244120594C61224824 @default.
- W4244120594 hasConceptScore W4244120594C71924100 @default.
- W4244120594 hasConceptScore W4244120594C86803240 @default.
- W4244120594 hasIssue "4" @default.
- W4244120594 hasLocation W42441205941 @default.
- W4244120594 hasLocation W42441205942 @default.
- W4244120594 hasOpenAccess W4244120594 @default.
- W4244120594 hasPrimaryLocation W42441205941 @default.
- W4244120594 hasRelatedWork W2066157660 @default.
- W4244120594 hasRelatedWork W2083542484 @default.
- W4244120594 hasRelatedWork W2119158312 @default.
- W4244120594 hasRelatedWork W2287506914 @default.
- W4244120594 hasRelatedWork W2330407128 @default.
- W4244120594 hasRelatedWork W2552050053 @default.
- W4244120594 hasRelatedWork W2554770529 @default.
- W4244120594 hasRelatedWork W2969635709 @default.
- W4244120594 hasRelatedWork W3037784022 @default.
- W4244120594 hasRelatedWork W4234996786 @default.
- W4244120594 hasVolume "18" @default.
- W4244120594 isParatext "false" @default.
- W4244120594 isRetracted "false" @default.
- W4244120594 workType "article" @default.