Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244156947> ?p ?o ?g. }
- W4244156947 abstract "<sec> <title>BACKGROUND</title> Clinical decision support systems are designed to utilize medical data, knowledge, and analysis engines and to generate patient-specific assessments or recommendations to health professionals in order to assist decision making. Artificial intelligence–enabled clinical decision support systems aid the decision-making process through an intelligent component. Well-defined evaluation methods are essential to ensure the seamless integration and contribution of these systems to clinical practice. </sec> <sec> <title>OBJECTIVE</title> The purpose of this study was to develop and validate a measurement instrument and test the interrelationships of evaluation variables for an artificial intelligence–enabled clinical decision support system evaluation framework. </sec> <sec> <title>METHODS</title> An artificial intelligence–enabled clinical decision support system evaluation framework consisting of 6 variables was developed. A Delphi process was conducted to develop the measurement instrument items. Cognitive interviews and pretesting were performed to refine the questions. Web-based survey response data were analyzed to remove irrelevant questions from the measurement instrument, to test dimensional structure, and to assess reliability and validity. The interrelationships of relevant variables were tested and verified using path analysis, and a 28-item measurement instrument was developed. Measurement instrument survey responses were collected from 156 respondents. </sec> <sec> <title>RESULTS</title> The Cronbach α of the measurement instrument was 0.963, and its content validity was 0.943. Values of average variance extracted ranged from 0.582 to 0.756, and values of the heterotrait-monotrait ratio ranged from 0.376 to 0.896. The final model had a good fit (<i>χ<sub>26</sub><sup>2</sup></i>=36.984; <i>P</i>=.08; comparative fit index 0.991; goodness-of-fit index 0.957; root mean square error of approximation 0.052; standardized root mean square residual 0.028). Variables in the final model accounted for 89% of the variance in the user acceptance dimension. </sec> <sec> <title>CONCLUSIONS</title> User acceptance is the central dimension of artificial intelligence–enabled clinical decision support system success. Acceptance was directly influenced by perceived ease of use, information quality, service quality, and perceived benefit. Acceptance was also indirectly influenced by system quality and information quality through perceived ease of use. User acceptance and perceived benefit were interrelated. </sec>" @default.
- W4244156947 created "2022-05-12" @default.
- W4244156947 creator A5018242855 @default.
- W4244156947 creator A5034820885 @default.
- W4244156947 creator A5037637077 @default.
- W4244156947 creator A5042164062 @default.
- W4244156947 creator A5060712149 @default.
- W4244156947 creator A5065725543 @default.
- W4244156947 date "2020-11-20" @default.
- W4244156947 modified "2023-09-26" @default.
- W4244156947 title "Evaluation Framework for Successful Artificial Intelligence–Enabled Clinical Decision Support Systems: Mixed Methods Study (Preprint)" @default.
- W4244156947 cites W1501177007 @default.
- W4244156947 cites W1535365635 @default.
- W4244156947 cites W1681426172 @default.
- W4244156947 cites W1721421031 @default.
- W4244156947 cites W1775722790 @default.
- W4244156947 cites W1963520761 @default.
- W4244156947 cites W1965509542 @default.
- W4244156947 cites W1966162762 @default.
- W4244156947 cites W1977488000 @default.
- W4244156947 cites W1984583786 @default.
- W4244156947 cites W1988649435 @default.
- W4244156947 cites W1996771848 @default.
- W4244156947 cites W2019793959 @default.
- W4244156947 cites W2053961376 @default.
- W4244156947 cites W2066400953 @default.
- W4244156947 cites W2073924861 @default.
- W4244156947 cites W2083728956 @default.
- W4244156947 cites W2098044946 @default.
- W4244156947 cites W2100408980 @default.
- W4244156947 cites W2103356704 @default.
- W4244156947 cites W2105846236 @default.
- W4244156947 cites W2118251800 @default.
- W4244156947 cites W2122912498 @default.
- W4244156947 cites W2147123123 @default.
- W4244156947 cites W2148482036 @default.
- W4244156947 cites W2149998251 @default.
- W4244156947 cites W2158809862 @default.
- W4244156947 cites W2186955474 @default.
- W4244156947 cites W2529452879 @default.
- W4244156947 cites W2560280054 @default.
- W4244156947 cites W2587780598 @default.
- W4244156947 cites W2593880123 @default.
- W4244156947 cites W2773642388 @default.
- W4244156947 cites W2779974493 @default.
- W4244156947 cites W2790230887 @default.
- W4244156947 cites W2794388147 @default.
- W4244156947 cites W2801702920 @default.
- W4244156947 cites W2802510811 @default.
- W4244156947 cites W2889012277 @default.
- W4244156947 cites W2905767872 @default.
- W4244156947 cites W2937049002 @default.
- W4244156947 cites W2940562610 @default.
- W4244156947 cites W2941215319 @default.
- W4244156947 cites W2949399455 @default.
- W4244156947 cites W2954213477 @default.
- W4244156947 cites W2956226132 @default.
- W4244156947 cites W2968014508 @default.
- W4244156947 cites W2972544275 @default.
- W4244156947 cites W2976345192 @default.
- W4244156947 cites W2986565205 @default.
- W4244156947 cites W2990325007 @default.
- W4244156947 cites W3016389613 @default.
- W4244156947 cites W3049271920 @default.
- W4244156947 cites W3098957488 @default.
- W4244156947 cites W3100477469 @default.
- W4244156947 cites W4234997634 @default.
- W4244156947 doi "https://doi.org/10.2196/preprints.25929" @default.
- W4244156947 hasPublicationYear "2020" @default.
- W4244156947 type Work @default.
- W4244156947 citedByCount "0" @default.
- W4244156947 crossrefType "posted-content" @default.
- W4244156947 hasAuthorship W4244156947A5018242855 @default.
- W4244156947 hasAuthorship W4244156947A5034820885 @default.
- W4244156947 hasAuthorship W4244156947A5037637077 @default.
- W4244156947 hasAuthorship W4244156947A5042164062 @default.
- W4244156947 hasAuthorship W4244156947A5060712149 @default.
- W4244156947 hasAuthorship W4244156947A5065725543 @default.
- W4244156947 hasBestOaLocation W42441569472 @default.
- W4244156947 hasConcept C106906290 @default.
- W4244156947 hasConcept C107327155 @default.
- W4244156947 hasConcept C119857082 @default.
- W4244156947 hasConcept C121332964 @default.
- W4244156947 hasConcept C121955636 @default.
- W4244156947 hasConcept C124101348 @default.
- W4244156947 hasConcept C144133560 @default.
- W4244156947 hasConcept C151730666 @default.
- W4244156947 hasConcept C154945302 @default.
- W4244156947 hasConcept C15744967 @default.
- W4244156947 hasConcept C163258240 @default.
- W4244156947 hasConcept C171606756 @default.
- W4244156947 hasConcept C196083921 @default.
- W4244156947 hasConcept C2777267654 @default.
- W4244156947 hasConcept C41008148 @default.
- W4244156947 hasConcept C43214815 @default.
- W4244156947 hasConcept C60641444 @default.
- W4244156947 hasConcept C62520636 @default.
- W4244156947 hasConcept C63527458 @default.
- W4244156947 hasConcept C70410870 @default.
- W4244156947 hasConcept C86803240 @default.