Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244272602> ?p ?o ?g. }
- W4244272602 abstract "Abstract Purpose The purpose of this study is to develop and validate a 3D deep learning model that predicts the final clinical diagnosis of Alzheimer’s disease (AD), Dementia with Lewy Bodies (DLB), Mild Cognitive Impairment due to Alzheimer’s disease (MCI-AD), and cognitively normal (CN) using fluorine 18 fluorodeoxyglucose PET ( 18 F-FDG PET) and compare model’s performance to that of multiple expert nuclear medicine physicians’ readers. Materials and Methods Retrospective 18 F-FDG PET scans for AD, MCI-AD, and CN were collected from Alzheimer’s Disease Neuroimaging Initiative (556 patients from 2005 to 2020), and CN and DLB cases were from European DLB Consortium (201 patients from 2005 to 2018). The introduced 3D convolutional neural network was trained using 90% of the data and externally tested using 10% as well as comparison to human readers on the same independent test set. The model’s performance was analyzed with sensitivity, specificity, precision, F1 score, receiver operating characteristic (ROC). The regional metabolic changes driving classification were visualized using uniform manifold approximation and projection (UMAP) and network attention. Results The proposed model achieved area under the ROC curve of 96.2% (95% confidence interval: 90.6-100) on predicting the final diagnosis of DLB in the independent test set, 96.4% (92.7-100) in AD, 71.4% (51.6-91.2) in MCI-AD, and 94.7% (90-99.5) in CN, which in ROC space outperformed human readers performance. The network attention depicted the posterior cingulate cortex is important for each neurodegenerative disease, and the UMAP visualization of the extracted features by the proposed model demonstrates the reality of development of the given disorders. Conclusion Using only 18F-FDG PET of the brain, a 3D deep learning model could predict the final diagnosis of the most common neurodegenerative disorders which achieved a competitive performance compared to the human readers as well as their consensus." @default.
- W4244272602 created "2022-05-12" @default.
- W4244272602 creator A5000092433 @default.
- W4244272602 creator A5002873607 @default.
- W4244272602 creator A5004228121 @default.
- W4244272602 creator A5021008448 @default.
- W4244272602 creator A5023465330 @default.
- W4244272602 creator A5029206713 @default.
- W4244272602 creator A5029551608 @default.
- W4244272602 creator A5030664058 @default.
- W4244272602 creator A5031293890 @default.
- W4244272602 creator A5038182376 @default.
- W4244272602 creator A5038942338 @default.
- W4244272602 creator A5042710338 @default.
- W4244272602 creator A5047210123 @default.
- W4244272602 creator A5047813770 @default.
- W4244272602 creator A5050332143 @default.
- W4244272602 creator A5051868596 @default.
- W4244272602 creator A5051934606 @default.
- W4244272602 creator A5055261000 @default.
- W4244272602 creator A5057801556 @default.
- W4244272602 creator A5058233829 @default.
- W4244272602 creator A5065710231 @default.
- W4244272602 creator A5068751115 @default.
- W4244272602 creator A5069409359 @default.
- W4244272602 creator A5071341444 @default.
- W4244272602 creator A5075747770 @default.
- W4244272602 creator A5081671692 @default.
- W4244272602 creator A5084333635 @default.
- W4244272602 creator A5085177497 @default.
- W4244272602 creator A5091579352 @default.
- W4244272602 date "2021-04-14" @default.
- W4244272602 modified "2023-10-18" @default.
- W4244272602 title "A 3D Deep Learning Model to Predict the Diagnosis of Dementia with Lewy Bodies, Alzheimer’s Disease and Mild Cognitive Impairment Using Brain 18F-FDG PET" @default.
- W4244272602 doi "https://doi.org/10.21203/rs.3.rs-415440/v1" @default.
- W4244272602 hasPublicationYear "2021" @default.
- W4244272602 type Work @default.
- W4244272602 citedByCount "4" @default.
- W4244272602 countsByYear W42442726022022 @default.
- W4244272602 countsByYear W42442726022023 @default.
- W4244272602 crossrefType "posted-content" @default.
- W4244272602 hasAuthorship W4244272602A5000092433 @default.
- W4244272602 hasAuthorship W4244272602A5002873607 @default.
- W4244272602 hasAuthorship W4244272602A5004228121 @default.
- W4244272602 hasAuthorship W4244272602A5021008448 @default.
- W4244272602 hasAuthorship W4244272602A5023465330 @default.
- W4244272602 hasAuthorship W4244272602A5029206713 @default.
- W4244272602 hasAuthorship W4244272602A5029551608 @default.
- W4244272602 hasAuthorship W4244272602A5030664058 @default.
- W4244272602 hasAuthorship W4244272602A5031293890 @default.
- W4244272602 hasAuthorship W4244272602A5038182376 @default.
- W4244272602 hasAuthorship W4244272602A5038942338 @default.
- W4244272602 hasAuthorship W4244272602A5042710338 @default.
- W4244272602 hasAuthorship W4244272602A5047210123 @default.
- W4244272602 hasAuthorship W4244272602A5047813770 @default.
- W4244272602 hasAuthorship W4244272602A5050332143 @default.
- W4244272602 hasAuthorship W4244272602A5051868596 @default.
- W4244272602 hasAuthorship W4244272602A5051934606 @default.
- W4244272602 hasAuthorship W4244272602A5055261000 @default.
- W4244272602 hasAuthorship W4244272602A5057801556 @default.
- W4244272602 hasAuthorship W4244272602A5058233829 @default.
- W4244272602 hasAuthorship W4244272602A5065710231 @default.
- W4244272602 hasAuthorship W4244272602A5068751115 @default.
- W4244272602 hasAuthorship W4244272602A5069409359 @default.
- W4244272602 hasAuthorship W4244272602A5071341444 @default.
- W4244272602 hasAuthorship W4244272602A5075747770 @default.
- W4244272602 hasAuthorship W4244272602A5081671692 @default.
- W4244272602 hasAuthorship W4244272602A5084333635 @default.
- W4244272602 hasAuthorship W4244272602A5085177497 @default.
- W4244272602 hasAuthorship W4244272602A5091579352 @default.
- W4244272602 hasBestOaLocation W42442726021 @default.
- W4244272602 hasConcept C126322002 @default.
- W4244272602 hasConcept C15744967 @default.
- W4244272602 hasConcept C169760540 @default.
- W4244272602 hasConcept C169900460 @default.
- W4244272602 hasConcept C2778548049 @default.
- W4244272602 hasConcept C2778733324 @default.
- W4244272602 hasConcept C2779134260 @default.
- W4244272602 hasConcept C2779483572 @default.
- W4244272602 hasConcept C2989005 @default.
- W4244272602 hasConcept C502032728 @default.
- W4244272602 hasConcept C548259974 @default.
- W4244272602 hasConcept C58471807 @default.
- W4244272602 hasConcept C58693492 @default.
- W4244272602 hasConcept C71924100 @default.
- W4244272602 hasConceptScore W4244272602C126322002 @default.
- W4244272602 hasConceptScore W4244272602C15744967 @default.
- W4244272602 hasConceptScore W4244272602C169760540 @default.
- W4244272602 hasConceptScore W4244272602C169900460 @default.
- W4244272602 hasConceptScore W4244272602C2778548049 @default.
- W4244272602 hasConceptScore W4244272602C2778733324 @default.
- W4244272602 hasConceptScore W4244272602C2779134260 @default.
- W4244272602 hasConceptScore W4244272602C2779483572 @default.
- W4244272602 hasConceptScore W4244272602C2989005 @default.
- W4244272602 hasConceptScore W4244272602C502032728 @default.
- W4244272602 hasConceptScore W4244272602C548259974 @default.
- W4244272602 hasConceptScore W4244272602C58471807 @default.
- W4244272602 hasConceptScore W4244272602C58693492 @default.
- W4244272602 hasConceptScore W4244272602C71924100 @default.
- W4244272602 hasLocation W42442726021 @default.