Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244342605> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4244342605 endingPage "623" @default.
- W4244342605 startingPage "619" @default.
- W4244342605 abstract "Free Access References Ethirajan Rathakrishnan, Ethirajan Rathakrishnan Indian Insitute of Technology Kanpur, Dept of Aerospace Engineering, Department of Aerospace Engine, Indian Institute of Technology, Kanpur, IndiaSearch for more papers by this author Book Author(s):Ethirajan Rathakrishnan, Ethirajan Rathakrishnan Indian Insitute of Technology Kanpur, Dept of Aerospace Engineering, Department of Aerospace Engine, Indian Institute of Technology, Kanpur, IndiaSearch for more papers by this author First published: 15 February 2019 https://doi.org/10.1002/9781119500377.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Rathakrishnan, E. (2005). Fundamentals of Engineering Thermodynamics, 2e. New Delhi: Prentice Hall of India. Tsien, H.S. (1946). Superaerodynamics, mechanics of rarefied gases. Journal of the Aeronautical Sciences 13 (2): 653. Rathakrishnan, E. (2012). Gas Tables, 3e. Hyderabad, India: Universities Press. Rathakrishnan, E. (2008). Physics of nozzle flow process. International Review of Aerospace Engineering (IREASE) 1 (5): 489– 491. Rathakrishnan, E. (2017). Instrumentation, Measurements and Experiments in Fluids, 2e. Boca Raton, FL: CRC Press. Rathakrishnan, E. (2017). Gas Dynamics, 6e. New Delhi: Prentice Hall of India. Shapiro A.H., Dynamics and Thermodynamics of Compressible Fluid Flow: Volumes I & II, Ronald Press, New York, 1953. Thompson, P.A. (1972). Compressible Fluid Dynamics. New York: McGraw-Hill. Rathakrishnan, E. (2012). Fluid Mechanics: An Introduction, 3e. New Delhi: Prentice Hall of India. Liepmann, H.W. and Roshko, A. (1963). Elements of Gas Dynamics. New York: Wiley. R.W. Ladenburg (ed.) (1954). Physical Measurement in Gas Dynamics and Combustion: Part I. Princeton: Princeton University Press. Hill, P.G. and Peterson, C. (1999). Mechanics and Thermodynamics of Propulsion. Addison-Wesley. Seddon, J. and Goldsmith, E.L. (1999). Intake Aerodynamics. Blackwell Science. Wu, J.H.T. (1962). On a two-dimensional perforated intake diffuser. Aerospace Engineering 21: 58. McGregor I., Some theoretical parameters relevant to the performance of rectangular intakes with double-ramp compression surfaces at supersonic speeds, RAE Technical Report 71237, 1971. Oswatitsch K.L., Der Druckruckgewinn bei Geschossen mit Ruckstossantrieb bei hohen Uber-schallgeswindigkeiten [der Wirkungsgrad von Stossdiffusoren]. Forschungen und Entwicklungen des Heereswaf-fenamtes, Bericht, Nr. 1005, 1944. Hermann, R. (1956). Supersonic Inlet Diffusers and Introduction to Internal Aerodynamics. Minneapolis-Honeywell Regulator Company. Connors J.F. and Meyer R.C., Design Criteria for Axisymmetric and Two-Dimensional Supersonic Inlets and Exits, NACA TN Note 3589, 1956. Abramovich, G.N. (1963). The Theory of Turbulent Jets. Boston: The MIT Press. Pai, S. (1954). Fluid Dynamics of Jets. Toronto: Van Nostrand. Rajaratnam, N. (1976). Turbulent Jets. Amsterdam: Elsevier Scientific Publishing Co. Browand, F.K. and Weidman, P.D. (1976). Large scales in the developing mixing layer. Journal of Fluid Mechanics 76: 127– 144. Carletti, M.J., Rogers, C.B., and Parekh, D.E. (1995). Use of streamwise vorticity to increase mass entrainment in a cylindrical ejector. AIAA Journal 33: 1641– 1645. Rathakrishnan, E. (2009). Experimental studies on the limiting tab. AIAA Journal 47 (10): 2475– 2485. Crow, S.C. and Champagne, F.H. (1971). Orderly structures in jet turbulence. Journal of Fluid Mechanics 48 (3): 547– 591. Brown, G.L. and Roshko, A. (1974). On density effects and large structure in turbulent mixing layers. Journal of Fluid Mechanics 64 (4): 775– 816. Winant, C.D. and Browand, F.K. (1974). Vortex paring: the mechanism of turbulent mixing layer growth at moderate Reynolds numbers. Journal of Fluid Mechanics 63 (2): 237– 255. Dimotakis, P.E. and Brown, G.J. (1976). The mixing layers at high Reynolds numbers: large structures dynamics and entrainment. Journal of Fluid Mechanics 78: 535– 560. Bernal, L. and Roshko, A. (1986). Streamwise vortex structures in plane mixing layers. Journal of Fluid Mechanics 170: 499– 525. Bogdanoff, D.W. (1983). Compressibility effects in turbulent shear layers. AIAA Journal 21: 926– 927. Papamoschou, D. and Debiasi, M. (1999). Noise measurements in supersonic jets treated with the Mach wave elimination method. AIAA Journal 37 (2):): 154– 160. Liepmann, D. and Gharib, M. (1992). The role of streamwise vorticity in the near-field entrainment of round jets. Journal of Fluid Mechanics 245: 643– 668. Hussain, A.K.M.F. (1986). Coherent structures and turbulence. Journal of Fluid Mechanics 173: 303– 356. Verma, S.B. and Rathakrishnan, E. (1998). Mixing enhancement and noise attenuation in notched elliptic-slot jets. International Journal of Turbo and Jet Engines 15: 7– 25. Roshko A. and Papamoschou D., Observation of Supersonic Free Shear Layers, AIAA Paper 86–0162 , 1986. Ho, C.M. and Gutmark, E.J. (1987). Vortex induction and mass entrainment in a small-aspect ratio elliptic jet. Journal of Fluid Mechanics 179: 383– 405. Bradbury, L.J.S. and Khadem, A.H. (1975). The distortion of a jet by tabs. Journal of Fluid Mechanics 70: 801– 813. Ahuja K.K. and Brown W.H., Shear Flow Control by Mechanical Tabs, AIAA Paper 89–0994 , 1989. Zaman K.B.M.Q., Streamwise Vorticity Generation and Mixing Enhancement in Free Jets by Delta-Tabs, AIAA Paper 93–3253, 1993. Zaman, K.B.M.Q., Reeder, M.F., and Samimy, M. (1994). Control of an axisymmetric jet using vortex generators. Physics of Fluids 6: 778– 793. Bohl D. and Foss J.F., Enhancement of Passive Mixing Tabs by the Addition of Secondary Tabs, AIAA Paper 96–054 , 1996. Wishart, D.P., Krothapalli, A., and Mungal, M.G. (1993). Supersonic jet control disturbances inside the nozzle. AIAA Journal 31 (7): 1340– 1341. Reeder, M.F. and Samimy, M. (1996). The evolution of a jet with vortex-generating tabs: real-time visualization and quantitative measurements. Journal of Fluid Mechanics 311: 73– 118. Zaman K.B.M.Q., Reeder M.F., and Samimy M., Supersonic Jet Mixing Enhancement by Delta Tabs, AIAA Paper 92–3548, 1992. Kumar Singh, N. and Rathakrishnan, E. (2002). Sonic jet control with tabs. Journal of Turbo and Jet Engines 19: 107– 118. Lovaraju P., Paparao K.P.V., and Rathakrishnan E., Shifted Cross-Wire for Supersonic Jet Control, AIAA Paper 2004–4080, 2004. Ahuja K.K., Mixing Enhancement and Jet Noise Reduction Through Tabs Plus Ejectors, AIAA Paper 93–4347, 1993. Steffen C.J., Reddy D.R., and Zaman K.B.M.Q., Numerical Modeling of Jet Entrainment for Nozzles Fitted with Delta Tabs, AIAA Paper 97–0709, 1997. Zaman, K.B.M.Q., Reeder, M.F., and Samimy, M. (1993). Control of an axisymmetric jet using vortex generators. Physics of Fluids A 6: 778– 793. Zaman K.B.M.Q., Spreading Characteristics and Thrust of Jets from Asymmetric Nozzles, AIAA Paper 96–0200, 1996. Surks, P., Rogers, C.B., and Parekh, D.E. (1994). Entrainment and acoustic variation in a round jet from introduced streamwise vorticity. AIAA Journal 32 (10): 2108– 2110. Jhang S. and Schneider S.P., Molecular-Mixing Measurement and Turbulent-Structure Visualizations in a Round Jet with Tabs, AIAA Paper 94–3082, 1994. Gretta, W.J. and Smith, C.R. (1993). The flow structure and statistics of a passive mixing tab. Journal of Fluid Engineering 115 (2): 255– 263. Krothapalli, A. and Wishart, D.P. (1993). Supersonic jet control via point disturbances inside the nozzle. AIAA Journal 31 (7): 1340– 1341. Csanady, G.T. (1996). The effect of mean velocity variation on jet noise. Journal of Fluid Mechanics 26 (1): 183– 197. Lovaraju, P., Clement, S., and Rathakrishnan, E. (2007). Effect of cross-wire and tabs on sonic jet structure. Journal of Shock Waves 17 (1–2): 71– 83. Samimy, M. and Reeder, M.F. (1993). Effects of tabs on the flow and noise field of an axisymmetric jet. AIAA Journal 31 (5): 609– 619. Lovaraju, P. and Rathakrishnan, E. (2006). Subsonic and transonic jet control with cross-wire. AIAA Journal 44 (11): 2700– 2705. Mrinal, K., Pankaj, S.T., and Rathakrishnan, E. (2006). Studies on the effect of notches on circular sonic jet mixing. Journal of Propulsion and Power 22: 211– 214. Clement, S. and Rathakrishnan, E. (2006). Characteristics of sonic jets with tabs. Shock Waves 15 (3–4): 211– 214. Srinivasan, K. and Rathakrishnan, E. (2001). A simple mobile anechoic chamber for experiments in jet acoustics. Journal of Turbo and Jet Engines 18 (1): 59– 64. Chiranjeevi Panindra, B. and Rathakrishnan, E. (2010). Corrugated tabs for supersonic jet control. AIAA Journal 48 (2): 453– 465. Rathakrishnan, E. (2008). Waves in correctly expanded supersonic jets. International Review of Aerospace Engineering (IREASE) 1 (6): 536– 538. Verma, S.B. and Rathakrishnan, E. (1999). Experimental study on the noise characteristics of notched circular-slot jets. Journal of Sound and Vibration 226 (2): 383– 396. Grinstein, F.F., Gutmark, E., and Parr, T. (1995). Near field dynamics of subsonic free square jets: a computational and experimental study. Physics of Fluids 7 (6): 1483– 1497. Gutmark, E., Schadow, K.C., and Wilson, K.J. (1991). Subsonic and supersonic combustion using non-semi-circular injectors. Journal of Propulsion and Power 7 (2): 240– 249. Miller, R.S., Madnia, C.K., and Givi, P. (1995). Numerical simulation of non-semi-circular jets. Computer & Fluids 24 (1): 1– 25. Koshigoe, S., Gutmark, E., and Schadow, K.C. (1989). Initial development of non-semi-circular jets leading to axis-switching. AIAA Journal 27 (4): 411– 419. Gutmark, E.J., Schadow, K.C., and Bicker, C.J. (1990). Near acoustic field and shock structure of rectangular supersonic jet. AIAA Journal 28 (7): 1163– 1170. Krothapalli, A., Hsia, Y., Baganoff, D., and Karamcheti, K. (1986). The role of screech tones on mixing of an underexpanded jet. Journal of Sound Vibration 106: 119– 143. Srinivasan, K. and Rathakrishnan, E. (2001). Studies on underexpanded rectangular slot jets. Journal of the Aeronautical Society of India 53 (1): 39– 43. Clement, S., Murugan, K.N., and Rathakrishnan, E. (2005). Superiority of elliptical jets. Journal of the Institution of Engineers (India): Aerospace Engineering Division 86: 1– 7. Schadow, K.C., Gutmark, E., Koshigoe, S., and Wilson, K.J. (1989). Combustion-related shearflow dynamics in elliptic supersonic jets. AIAA Journal 27 (10): 1347– 1353. Quinn, W.R. (2007). Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate. European Journal of Mechanics 26: 583– 614. Mitchell, D.M., Honnery, D.R., and Soria, J. (2013). Near-field structure of underexpanded elliptic jets. Experiments in Fluids 54 (1578). Yoon, J.H. and Lee, S.J. (2003). Investigation of the near-field structure of an elliptic jet using stereoscopic particle image velocimetry. Measurement Science and Technology 14: 2034– 2046. Hussain, A.K.M.F. and Husain, H.S. (1989). Elliptic jets: part 1: characteristics of unexcited and excited jets. Journal of Fluid Mechanics 208: 257– 320. Quinn, W.R. (1989). On mixing in an elliptic turbulent free jet. Physics of Fluids 1 (10): 1716– 1722. Menon, N. and Skews, B.W. (2010). Shock wave configurations and flow structures in nonaxisymmetric underexpanded sonic jets. Shock Waves 20: 175– 190. Hussain, A.K.M.F. and Husain, H.S. (1991). Elliptic jets: part 2: dynamics of coherent structures: pairing. Journal of Fluid Mechanics 233: 439– 482. Gutmark, E.J., Schadow, K.C., Parr, T.P. et al. (1989). Non-semi-circular jets in combustion systems. Experiments in Fluids 7: 248– 258. Zaman, K.B.M.Q. (1996). Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. Journal of Fluid Mechanics 316: 1– 27. Aravindh Kumar, S.M. and Rathakrishnan, E. (2016). Characteristics of a supersonic elliptic jet. The Aeronautical Journal 120 (1225): 495– 519. https://doi.org/10.1017/aer.2016.7. Tam, C.K.W. (1995). Supersonic jet noise. Annual Review of Fluid Mechanics 27: 17– 43. Chauhan, V., Aravindh Kumar, S.M., and Rathakrishnan, E. (2015). Mixing characteristics of underexpanded elliptic sonic jets from orifice and nozzle. Journal of Propulsion and Power 31 (2): 496– 504. Chauhan, V., Aravindh Kumar, S.M., and Rathakrishnan, E. (2016). Aspect ratio effect on elliptical sonic jet mixing. The Aeronautical Journal 120 (1230): 1197– 1214. https://doi.org/10.1017/aer.2016.55. Aravindh Kumar, S.M. and Rathakrishnan, E. (2014). Triangular tabs for supersonic jet mixing enhancement. The Aeronautical Journal 118 (1209): 1245– 1278. https://doi.org/10.1017/S0001924000009969. Takama, Y., Suzuki, K., and Rathakrishnan, E. (2010). Visualization and size measurement of vortex shed by flat and arc plates in a uniform flow. International Review of Aerospace Engineering 1: 55– 60. Chow, W.L. and Chang, I.S. (1972). Mach reflection from overexpanded nozzle flows. AIAA Journal 10 (9): 1261– 1263. Arun Kumar, P. and Rathakrishnan, E.. Triangular tabs for supersonic jet mixing enhancement, The Aeronautical Journal November 2014, Vol. 118, No. 1209, pp. 1245– 1278, DOI: 10.1017/S0001924000009969. Bajpai, A. and Rathakrishnan, E. (2017). Tab geometry effect on supersonic elliptic jet control. International Journal of Turbo and Jet Engines 34 (4): 395– 408. Kumar P., Shifted tabs for supersonic jet control, Master's thesis, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, India, 2015. Berrueta, T. and Rathakrishnan, E. (2017). Control of subsonic and sonic jets with limiting tabs. International Journal of Turbo and Jet Engines 34 (1): 103– 113. Maruthupandiyan, K. and Rathakrishnan, E. (2016). Supersonic jet control with shifted tabs. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 0 (0): 1– 15 https://doi.org/10.1177/0954410016679197. Dadhich U, Jet control with ventilated triangular tabs, Master's thesis, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, India, 2015. Manideep A., Shifted sharp-edged rectangular tab for supersonic jet control, Master's thesis, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, India, 2016. Aravindh Kumar, S.M. and Rathakrishnan, E. (2017). Control of elliptic supersonic jet of aspect ratio 3. Journal of Aerospace Engineering 30 (5): https://doi.org/10.1061/(ASCE) AS.1943-5525.0000762. Rathakrishnan, E. (2018). AR 4 elliptic jet control with limiting tab. Fluid Dyn. Res. 50 (2018) 025505 (20pp) https://doi.org/10.1088/1873-7005/aa9b96. Applied Gas Dynamics, second ReferencesRelatedInformation" @default.
- W4244342605 created "2022-05-12" @default.
- W4244342605 date "2019-02-15" @default.
- W4244342605 modified "2023-09-25" @default.
- W4244342605 title "References" @default.
- W4244342605 cites W1510887000 @default.
- W4244342605 cites W1662926044 @default.
- W4244342605 cites W1896625765 @default.
- W4244342605 cites W1966049929 @default.
- W4244342605 cites W1967176126 @default.
- W4244342605 cites W1969144250 @default.
- W4244342605 cites W1969579127 @default.
- W4244342605 cites W1982444935 @default.
- W4244342605 cites W1987070017 @default.
- W4244342605 cites W1987366562 @default.
- W4244342605 cites W1998414339 @default.
- W4244342605 cites W2000749046 @default.
- W4244342605 cites W2008649474 @default.
- W4244342605 cites W2009596038 @default.
- W4244342605 cites W2010001209 @default.
- W4244342605 cites W2013656102 @default.
- W4244342605 cites W2020833022 @default.
- W4244342605 cites W2023577131 @default.
- W4244342605 cites W2027201559 @default.
- W4244342605 cites W2031362519 @default.
- W4244342605 cites W2033014911 @default.
- W4244342605 cites W2037523190 @default.
- W4244342605 cites W2041215417 @default.
- W4244342605 cites W2052204224 @default.
- W4244342605 cites W2057946954 @default.
- W4244342605 cites W2061362975 @default.
- W4244342605 cites W2064799589 @default.
- W4244342605 cites W2065580523 @default.
- W4244342605 cites W2067160226 @default.
- W4244342605 cites W2067260262 @default.
- W4244342605 cites W2072481122 @default.
- W4244342605 cites W2076214721 @default.
- W4244342605 cites W2087934293 @default.
- W4244342605 cites W2089231817 @default.
- W4244342605 cites W2094328900 @default.
- W4244342605 cites W2096598706 @default.
- W4244342605 cites W2104120510 @default.
- W4244342605 cites W2107397883 @default.
- W4244342605 cites W2111677524 @default.
- W4244342605 cites W2111980920 @default.
- W4244342605 cites W2120043538 @default.
- W4244342605 cites W2124586081 @default.
- W4244342605 cites W2134645468 @default.
- W4244342605 cites W2135353663 @default.
- W4244342605 cites W2135393609 @default.
- W4244342605 cites W2136160744 @default.
- W4244342605 cites W2140970948 @default.
- W4244342605 cites W2143335728 @default.
- W4244342605 cites W2147936104 @default.
- W4244342605 cites W2157396194 @default.
- W4244342605 cites W2160428180 @default.
- W4244342605 cites W2303748163 @default.
- W4244342605 cites W2322701238 @default.
- W4244342605 cites W2333503311 @default.
- W4244342605 cites W2412539000 @default.
- W4244342605 cites W2747813729 @default.
- W4244342605 cites W2768548410 @default.
- W4244342605 cites W2978799970 @default.
- W4244342605 cites W3091343202 @default.
- W4244342605 cites W4248975642 @default.
- W4244342605 cites W48571451 @default.
- W4244342605 doi "https://doi.org/10.1002/9781119500377.refs" @default.
- W4244342605 hasPublicationYear "2019" @default.
- W4244342605 type Work @default.
- W4244342605 citedByCount "0" @default.
- W4244342605 crossrefType "other" @default.
- W4244342605 hasBestOaLocation W42443426051 @default.
- W4244342605 hasConcept C41008148 @default.
- W4244342605 hasConceptScore W4244342605C41008148 @default.
- W4244342605 hasLocation W42443426051 @default.
- W4244342605 hasOpenAccess W4244342605 @default.
- W4244342605 hasPrimaryLocation W42443426051 @default.
- W4244342605 hasRelatedWork W1596801655 @default.
- W4244342605 hasRelatedWork W2130043461 @default.
- W4244342605 hasRelatedWork W2350741829 @default.
- W4244342605 hasRelatedWork W2358668433 @default.
- W4244342605 hasRelatedWork W2376932109 @default.
- W4244342605 hasRelatedWork W2382290278 @default.
- W4244342605 hasRelatedWork W2390279801 @default.
- W4244342605 hasRelatedWork W2748952813 @default.
- W4244342605 hasRelatedWork W2899084033 @default.
- W4244342605 hasRelatedWork W2530322880 @default.
- W4244342605 isParatext "false" @default.
- W4244342605 isRetracted "false" @default.
- W4244342605 workType "other" @default.