Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244366981> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4244366981 endingPage "246" @default.
- W4244366981 startingPage "243" @default.
- W4244366981 abstract "Free Access References William B. Heard, William B. Heard Alexandria, VA, USASearch for more papers by this author Book Author(s):William B. Heard, William B. Heard Alexandria, VA, USASearch for more papers by this author First published: 07 October 2005 https://doi.org/10.1002/9783527618811.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Theodore Frankel 1997, The Geometry of Physics, Cambridge University Press, Cambridge. Google Scholar Edwin Bidwell Wilson 1960, Vector Analysis, Dover, New York, A textbook for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs. Google Scholar M. D. Shuster 1993, A survey of attitude representations, J. Astronaut. Sci. 41, 439– 517. Web of Science®Google Scholar H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert 1991 Numbers, Graduate Texts in Mathematics, vol. 123, Springer, New York. Google Scholar John C. Baez 2002, The octonions, Bull. Am. Math. Soc. (N.S.) 39 (2), 145– 205. CrossrefWeb of Science®Google Scholar Harold S. Morton 1993, Hamiltonian and Lagrangian formulations of rigid-body rotational dynamics based on the euler parameters, J. Astronaut. Sci. 41, 569– 591. Web of Science®Google Scholar Patrick J. Rabier, Werner C. Rheinboldt 2000, Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. CrossrefGoogle Scholar Simon L. Altmann 1989, Hamilton, Rodrigues, and the quaternion scandal, Math. Mag., 62 (5), 291– 308. CrossrefGoogle Scholar John H. Conway, Derek A. Smith 2003, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A K Peters Ltd., Natick, MA. CrossrefGoogle Scholar Charles W. Misner, Kip S. Thorne, John Archibald Wheeler 1973, Gravitation, Freeman, San Francisco, CA. Google Scholar Tristan Needham 1997, Visual Complex Analysis, The Clarendon Press Oxford University Press, New York. Google Scholar Andre Deprit, A. Elipe 1993, Complete reduction of the Euler-Poinsot problem. J. Astronaut. Sci. 41, 603– 628. Web of Science®Google Scholar E. N. Moore 1983, Theoretical Mechanics, Wiley, New York. Google Scholar Felix Klein 1956, Lectures on the Icosahedron, Dover, New York, translated from Vorlesungen über das Ikosaeder by G. G. Morrice. Google Scholar Richard P. Feynman 1987, Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures, Cambridge University Press, Cambridge, pp. 1– 59. CrossrefGoogle Scholar V. I. Arnold 1978, Mathematical Methods of Classical Mechanics, Springer, New York. CrossrefGoogle Scholar Jerrold E. Marsden, Tudor S. Ratiu 1999, Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, vol. 17, Springer, New York. CrossrefGoogle Scholar C. Leubner 1981, Correcting a widespread error concerning the angular velocity of a rotating rigid body, Am. J. Phys., 49, 232– 234. CrossrefWeb of Science®Google Scholar P. Tsiotras, J. M. Longuski 1995, A new parameterization of the attitude kinematics, J. Astronaut. Sci. 43, 243– 262. Web of Science®Google Scholar Richard Talman 2000, Geometric Mechanics, Wiley Interscience, New York. Google Scholar Florian Scheck 1999, Mechanics, Springer, Berlin. CrossrefGoogle Scholar Donald T. Greenwood 2003, Advanced Dynamics, Cambridge University Press, Cambridge. CrossrefGoogle Scholar V. I. Arnold, V. V. Kozlov, A. I. Neishtadt 1997, Mathematical Aspects of Classical and Celestial Mechanics, Springer, Berlin. Google Scholar Robert Hermann 1968, Differential Geometry and the Calculus of Variations, Mathematics in Science and Engineering, vol. 49, Academic Press, New York. Google Scholar Andrew D. Lewis 2000, Simple mechanical control systems with constraints, IEEE Trans. Automat. Control 45 (8), 1420– 1436. CrossrefWeb of Science®Google Scholar H. Poincaré 1901, Sur une forme nouvelle des équations de la mécanique, C. R. Acad. Sci. 132, 369– 371. Google Scholar Alexander I. Bobenko, Yuri B. Suris 1999, Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products, Lett. Math. Phys. 49 (1), 79– 93. CrossrefWeb of Science®Google Scholar Boris A. Springborn 2000, The toy top, an integrable system of rigid body dynamics, J. Nonlinear Math. Phys. 7, 387– 410. CrossrefGoogle Scholar Peter J. Olver 1993, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107, Springer, New York. CrossrefGoogle Scholar H. Andoyer 1923, Cours de mécanique céleste, Gauthier-Villars et Cie, Paris. Google Scholar G. Hori 1968, Topics in celestial mechanics. Unpublished Yale University lecture notes. Google Scholar Andre Deprit 1967, Free rotation of a rigid body studied in the phase plane, Am. J. Physics 35, 424– 428. CrossrefWeb of Science®Google Scholar Robert E. Kalaba, Firdaus E. Udwadia, P. Phohomsiri 2004, Mechanical systems with nonideal constraints: Explicit equations without the use of generalized inverses, J. Appl. Mech. 71, 615– 621. CrossrefWeb of Science®Google Scholar Anthony M. Bloch, P. S. Krishnaprasad, Jerrold E. Marsden, Richard M. Murray 1996, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal. 136 (1), 21– 99. CrossrefWeb of Science®Google Scholar William Duncan MacMillan 1960, Theoretical Mechanics. Dynamics of Rigid Bodies, Dover, New York. Google Scholar L. A. Pars 1965, A Treatise on Analytical Dynamics, Wiley, New York. Google Scholar J. P. Ostrowski 1995, Geometric Perspectives on the Mechanics and Control of Undulatory Motion, PhD thesis, California Institute of Technology. Google Scholar Firdaus E. Udwadia, Robert E. Kalaba 2002, On the foundations of analytical dynamics, Int. J. Non-Linear Mech. 37, 1079– 1090. CrossrefWeb of Science®Google Scholar Firdaus E. Udwadia, Robert E. Kalaba 1996, Analytical Dynamics, Cambridge University Press, Cambridge. CrossrefGoogle Scholar E. H. Moore 1920, On the reciprocal of the general algebraic matrix, Bull. Am. Math. Soc. 26, 394– 395. Google Scholar R. Penrose 1955, A generalized inverse for matrices, Proc. Cambridge Phil. Soc. 51, 406– 413. CrossrefGoogle Scholar Anthony M. Bloch, Jerrold E. Marsden, Dmitry V. Zenkov 2005, Nonholonomic dynamics, Notices Am. Math. Soc. 52 (3), 324– 333. Google Scholar Harold T. Davis 1962, Introduction to Nonlinear Differential and Integral Equations, Dover, New York. Google Scholar E. T. Whittaker, G. N. Watson 1963, A Course of Modern Analysis, 4th edn, Cambridge University Press, New York. Google Scholar M. Poinsot 1834, Outlines of a New Theory of Rotary Motion, Pitt Press, Cambridge, translated from Théorie Nouvelle de la rotation des corps by Charles Whitley. Google Scholar Richard Montgomery 1991, How much does the rigid body rotate? A Berry's phase from the 18th century, Am. J. Phys. 59 (5), 394– 398. CrossrefWeb of Science®Google Scholar L. Lecornu 1906, Sur l'herlpolhodie, Bull. Soc. Math. France 34, 40– 41. CrossrefGoogle Scholar Jair Koiller 2002, Momentum maps and geometric phases, Classical and Celestial Mechanics (Recife, 1993/1999), Princeton University Press, Princeton, NJ, pp. 281– 2349. Google Scholar Mark Levi 2002, Lectures on geometrical methods in mechanics, Classical and Celestial Mechanics (Recife, 1993/1999), Princeton University Press, Princeton, NJ, pp. 239– 280. Web of Science®Google Scholar E. T. Whittaker 1959, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, 4th edn, Cambridge University Press, New York. Google Scholar Antonio Elipe, M. Arribas, A. Riaguas 1997, Complete analysis of bifurcations in the axial gyrostat problem, J. Phys. A 30 (2), 587– 601. CrossrefWeb of Science®Google Scholar P. H. Shu, J. E. Cochran, S. D. Rews 1982, Attitude motion of asymmetric dual-spin spacecraft, J. Guid., Contr. Dyn. 5, 37– 42. CrossrefWeb of Science®Google Scholar V. V. Ruminatsev 1961, On the stability of motion of gyrostats, Appl. Math. Mech. PMM 25, 9– 16. CrossrefGoogle Scholar S. Kowalevsky 1889, Sur le problème de le rotation d'un corps solide autour d'un point fixe, Acta Math. 12, 177– 232. CrossrefGoogle Scholar Michael Tabor 1989, Chaos and Integrability in Nonlinear Dynamics, A Wiley-Interscience Publication, Wiley, New York. Google Scholar Michèle Audin 1996, Spinning Tops, Cambridge Studies in Advanced Mathematics, vol. 51, Cambridge University Press, Cambridge. Google Scholar Michèle Audin 2001, Les systèmes hamiltoniens et leur intégrabilité, Cours Spécialisés [Specialized Courses], vol. 8, Société Mathématique de France, Paris. Google Scholar Richard H. Cushman, Larry M. Bates 1997, Global Aspects of Classical Integrable Systems, Birkhäuser Verlag, Basel. CrossrefGoogle Scholar V. I. Arnold, A. Avez 1968, Ergodic Problems of Classical Mechanics, Benjamin, New York-Amsterdam, translated from the French by A. Avez. Google Scholar C. J. Budd, M. D. Piggott 2003, Geometric integration and its applications. Handbook of Numerical Analysis, vol. XI, Handb. Numer. Anal., XI, North-Holland, Amsterdam, pp. 35– 139. CrossrefGoogle Scholar Arieh Iserles, Hans Z. Munthe-Kaas, Syvert P. Nørsett, Antonella Zanna 2000, Lie-group methods, Acta Numerica, 2000, Acta Numer., vol. 9, Cambridge University Press, Cambridge, pp. 215– 365. Google Scholar Hans Munthe-Kaas 1998, Runge-Kutta methods on Lie groups, BIT 38 (1), 92– 111. CrossrefGoogle Scholar K. Engø, A. Marthinsen 1998, Modeling and solution of some mechanical problems on Lie groups, Multibody Syst. Dyn. 2, 71– 88. CrossrefGoogle Scholar K. Engø, A. Marthinsen 2000, Partitioned Runge-Kuttta methods in Lie-group setting, Reports in Informatics 202, University of Bergen. Google Scholar K. Engø, A. Marthinsen 2001, A note on the numerical solution of the heavy top equations, Multibody Syst. Dyn. 5, 387– 397. CrossrefWeb of Science®Google Scholar K. E. Brenan, S. L. Campbell, L. R. Petzold 1996, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics, vol. 14, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Google Scholar E. Hairer, G. Wanner 1991, Solving Ordinary Differential Equations. II, Springer Series in Computational Mathematics, vol. 14, Springer, Berlin. CrossrefGoogle Scholar J. Walker 1985, Roundabout: The physics of rotation in the everyday world, Readings from the Amateur Scientist in Scientific American, Freeman, New York. Google Scholar Caren Tischendorf 1999, Numerical Analysis of Differential-Algebraic Equations, available at: http://www.mathematik.huberlin.de/caren/dae-vorl.pdf Google Scholar J. B. d'Alembert, Recherches sur la Precession des Equinoxes, et sur la nutation de l'Axe de la Terre, dans le Systeme Newtonien. Paris, David, 1749. Google Scholar S. Chandrasekhar 1995, Newton's Principia for the Common Reader, The Clarendon Press Oxford University Press, New York. Google Scholar H. Kinoshita 1977, Theory of the rotation of the rigid earth, Celestial Mech. 15, 277– 326. CrossrefWeb of Science®Google Scholar P. Rocher P. Bretagnon, J. L. Simon 1997, Theory of the rotation of the rigid earth, Astron. Astrophys. 319, 305– 317. Web of Science®Google Scholar Alan Fletcher 1966, Precession and nutation, in Space Mathematics: Part I, ed. J. Barkely Rosser, American Mathematical Society, pp. 77– 99. Web of Science®Google Scholar Boris Garfinkel 1969, Topics in celestial mechanics, Unpublished Yale University lecture notes. Google Scholar H. C. Plummer 1960, An Introductory Treatise on Dynamical Astronomy, Dover, New York. Google Scholar James G. Williams 1994, Contributions to the earth's obliquity rate, precession and nutation, Astron. J. 108, 711– 724. CrossrefWeb of Science®Google Scholar G. Hori 1966, Theory of general perturbations with unspecified canonical variables, Pub. Astron. Soc. Japan 18, 287– 296. Google Scholar M. J. Sidi 1974, Space Dynamics and Control, Cambridge University Press, Cambridge. Google Scholar J. M. Selig 1996, Geometrical Methods in Robotics, Monographs in Computer Science. Springer, New York. CrossrefGoogle Scholar S. R. Ploen 1997, Geometric Algorithms for the Dynamics and Control of Multibody Systems, PhD thesis, University of California Irvine. Google Scholar M. Žefran, F. Bullo 2004, Lagrangian dynamics, in Robotics and Automation Handbook, ed. T. Kurfess, CRC Press, Boca Raton, FL. Web of Science®Google Scholar Michael P. Allen, Introduction to molecular dynamics simulation. In Helmut Grub-müller, Norbert Attig, Kurt Binder and Kurt Kremer, editors, Computational Soft Matter: From Synthetic Polymers to Proteins, Lecture Notes, number 23, pages 1– 28. John von Neumann Institute for Computing, Jülich 2004. Google Scholar Godehard Sutmann, Classical molecular dynamics. In D. Marx, J. Grotendorst and A. Muramatsu, editors, Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, number 10, pages 211– 254. John von Neumann Institute for Computing, Jülich 2000. Google Scholar C. Lubich, E. Hairer, G. Wanner 2003, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica 12, 399– 450. CrossrefGoogle Scholar W. M. Smart 1962, Text-Book on Spherical Astronomy, 5th edn, Cambridge University Press, Cambridge. Google Scholar Louis Brand 1957, Vector Analysis, Wiley, New York. Google Scholar William P. Thurston 1997, Three-Dimensional Geometry and Topology, vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ. CrossrefGoogle Scholar Paul F. Byrd, Morris D. Friedman 1954, Handbook of Elliptic Integrals for Engineers and Physicists, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete Bd LXVII, Springer, Berlin. Google Scholar Derek F. Lawden 1989, Elliptic Functions and Applications, Applied Mathematical Sciences, vol. 80, Springer, New York. CrossrefGoogle Scholar Henry McKean, Victor Moll 1997, Elliptic Curves, Cambridge University Press, Cambridge. CrossrefGoogle Scholar Jerome Spanier, Keith Oldham 1987, An Atlas of Functions, Hemisphere, New York. Google Scholar Wulf Rossmann 2002, Lie Groups, Oxford Graduate Texts in Mathematics, vol. 5, Oxford University Press, Oxford. Google Scholar Rigid Body Mechanics: Mathematics, Physics and Applications ReferencesRelatedInformation" @default.
- W4244366981 created "2022-05-12" @default.
- W4244366981 date "2005-10-07" @default.
- W4244366981 modified "2023-09-24" @default.
- W4244366981 title "References" @default.
- W4244366981 cites W1182838307 @default.
- W4244366981 cites W1510254751 @default.
- W4244366981 cites W1524590822 @default.
- W4244366981 cites W1566463023 @default.
- W4244366981 cites W1654144637 @default.
- W4244366981 cites W1691229643 @default.
- W4244366981 cites W178039687 @default.
- W4244366981 cites W1968530255 @default.
- W4244366981 cites W1974511160 @default.
- W4244366981 cites W1979483059 @default.
- W4244366981 cites W1999111109 @default.
- W4244366981 cites W2016012557 @default.
- W4244366981 cites W2020218958 @default.
- W4244366981 cites W2053058434 @default.
- W4244366981 cites W2055315817 @default.
- W4244366981 cites W2063401830 @default.
- W4244366981 cites W2064647424 @default.
- W4244366981 cites W2088186464 @default.
- W4244366981 cites W2132182061 @default.
- W4244366981 cites W2138642494 @default.
- W4244366981 cites W2142274086 @default.
- W4244366981 cites W2149436863 @default.
- W4244366981 cites W2155310359 @default.
- W4244366981 cites W2155813418 @default.
- W4244366981 cites W2584217265 @default.
- W4244366981 cites W2597608666 @default.
- W4244366981 cites W2762767781 @default.
- W4244366981 cites W4205727720 @default.
- W4244366981 cites W4212977386 @default.
- W4244366981 cites W4230988654 @default.
- W4244366981 cites W4233512036 @default.
- W4244366981 cites W4235693166 @default.
- W4244366981 cites W4237021507 @default.
- W4244366981 cites W4240337271 @default.
- W4244366981 cites W4254290044 @default.
- W4244366981 cites W4292170110 @default.
- W4244366981 cites W4293515545 @default.
- W4244366981 cites W4298215433 @default.
- W4244366981 cites W2059506074 @default.
- W4244366981 doi "https://doi.org/10.1002/9783527618811.refs" @default.
- W4244366981 hasPublicationYear "2005" @default.
- W4244366981 type Work @default.
- W4244366981 citedByCount "0" @default.
- W4244366981 crossrefType "other" @default.
- W4244366981 hasBestOaLocation W42443669811 @default.
- W4244366981 hasConcept C41008148 @default.
- W4244366981 hasConceptScore W4244366981C41008148 @default.
- W4244366981 hasLocation W42443669811 @default.
- W4244366981 hasOpenAccess W4244366981 @default.
- W4244366981 hasPrimaryLocation W42443669811 @default.
- W4244366981 hasRelatedWork W1596801655 @default.
- W4244366981 hasRelatedWork W2130043461 @default.
- W4244366981 hasRelatedWork W2350741829 @default.
- W4244366981 hasRelatedWork W2358668433 @default.
- W4244366981 hasRelatedWork W2376932109 @default.
- W4244366981 hasRelatedWork W2382290278 @default.
- W4244366981 hasRelatedWork W2390279801 @default.
- W4244366981 hasRelatedWork W2748952813 @default.
- W4244366981 hasRelatedWork W2899084033 @default.
- W4244366981 hasRelatedWork W2530322880 @default.
- W4244366981 isParatext "false" @default.
- W4244366981 isRetracted "false" @default.
- W4244366981 workType "other" @default.