Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244729596> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4244729596 endingPage "1058" @default.
- W4244729596 startingPage "1058" @default.
- W4244729596 abstract "Abstract Empirical Bayes methods are becoming increasingly popular in statistics. Robbins (1955) introduced the method in the context of nonparametric estimation of a completely unspecified prior distribution. Subsequently, the method has been explored very successfully in a series of articles by Efron and Morris (1973, 1975, 1977) in a parametric framework. In the Efron—Morris setup, a family of parametric distributions is used as possible priors, but only when one or more of the parameters of the family of prior distributions is estimated from the data. Morris (1983) listed a number of areas where empirical Bayes methods are used. One of the main features of empirical Bayes analysis is to borrow strength from the ensemble—that is, use information from similar sources in constructing estimators and predictors in addition to the most directly available source of information. There are some situations in finite population sampling where such methods might be suitable. For instance, in many repetitive surveys such as household surveys, crop-cutting experiment, and so forth, we have at our disposal not only the current data, but also data from similar past experiments. This is particularly true when surveys are done routinely on, say, a monthly basis, and physical conditions of the sampling units do not change drastically over a period of time. In such cases, past information might be used profitably in arriving at suitable estimates of different characteristics of interest. For definiteness, consider a finite population with units labeled 1, 2, …, N. Let yi , denote the value of a single characteristic attached to the unit i. The vector y = (y 1 …, yN )' is the unknown state of nature, and it is assumed to belong to θ = RN . A subset s of {1, …, N} is called a sample. Let S denote the set of all possible samples. We consider only samples of size n. Consider the model yi = θ + εi(i = 1), …, N), where θ, ε1, …, εN are independently distributed with θ ∽ N(μ, σ2) and εi's iid N(0, τ2). Then the Bayes estimator of γ(y) = N-1 ∑i=1 N yi, under squared error loss is where , and M = τ2/σ2. In an empirical Bayes framework, it is assumed that we are at the mth stage of the sampling procedure and that sampling has been repeated (m − 1) times. The population size at the jth stage of the experiment is denoted by Nj, and at that stage we associate with the ith unit a certain characteristic, say, yi (j) (i = 1, …, Nj; j = 1, …, m). A fixed sample of size nj is taken at the jth stage, and a typical sample is denoted by sI(j = 1, …, m). Consider the model yi (j) = θ(j) + εi (j) (I = 1, …, Nj; j = 1, …, m), where θ(j)'s and εi (j)'s are all independently distributed with θ(j)'s iid N(μ σ2) and εi (j)'s iid N(0, τ2). Writing Bj = M/(M + nj) (j = 1, …, m), it follows from (1) that at the mth stage of the experiment, the Bayes estimator of where . In an empirical Bayes analysis, one or both of the parameters M and μ are unknown and need to be estimated from the data. This article proposes an estimator of M as a function of the usual F ratio of between and within mean squares and an estimator of μ based on the principle of maximum likelihood. A variety of properties of these empirical Bayes estimators are established both in the general case and in the special case when n1 = … = nm. These empirical Bayes estimators serve as a compromise between the classical and the Bayes estimators and perform quite satisfactorily in their risk performance." @default.
- W4244729596 created "2022-05-12" @default.
- W4244729596 creator A5047432897 @default.
- W4244729596 creator A5077266587 @default.
- W4244729596 date "1986-12-01" @default.
- W4244729596 modified "2023-10-18" @default.
- W4244729596 title "Empirical Bayes Estimation in Finite Population Sampling" @default.
- W4244729596 doi "https://doi.org/10.2307/2289083" @default.
- W4244729596 hasPublicationYear "1986" @default.
- W4244729596 type Work @default.
- W4244729596 citedByCount "25" @default.
- W4244729596 crossrefType "journal-article" @default.
- W4244729596 hasAuthorship W4244729596A5047432897 @default.
- W4244729596 hasAuthorship W4244729596A5077266587 @default.
- W4244729596 hasConcept C102366305 @default.
- W4244729596 hasConcept C105795698 @default.
- W4244729596 hasConcept C106131492 @default.
- W4244729596 hasConcept C107673813 @default.
- W4244729596 hasConcept C117251300 @default.
- W4244729596 hasConcept C140779682 @default.
- W4244729596 hasConcept C144024400 @default.
- W4244729596 hasConcept C149782125 @default.
- W4244729596 hasConcept C149923435 @default.
- W4244729596 hasConcept C166957645 @default.
- W4244729596 hasConcept C177769412 @default.
- W4244729596 hasConcept C185429906 @default.
- W4244729596 hasConcept C205649164 @default.
- W4244729596 hasConcept C207201462 @default.
- W4244729596 hasConcept C2779343474 @default.
- W4244729596 hasConcept C2908647359 @default.
- W4244729596 hasConcept C31972630 @default.
- W4244729596 hasConcept C33923547 @default.
- W4244729596 hasConcept C41008148 @default.
- W4244729596 hasConcept C98385598 @default.
- W4244729596 hasConceptScore W4244729596C102366305 @default.
- W4244729596 hasConceptScore W4244729596C105795698 @default.
- W4244729596 hasConceptScore W4244729596C106131492 @default.
- W4244729596 hasConceptScore W4244729596C107673813 @default.
- W4244729596 hasConceptScore W4244729596C117251300 @default.
- W4244729596 hasConceptScore W4244729596C140779682 @default.
- W4244729596 hasConceptScore W4244729596C144024400 @default.
- W4244729596 hasConceptScore W4244729596C149782125 @default.
- W4244729596 hasConceptScore W4244729596C149923435 @default.
- W4244729596 hasConceptScore W4244729596C166957645 @default.
- W4244729596 hasConceptScore W4244729596C177769412 @default.
- W4244729596 hasConceptScore W4244729596C185429906 @default.
- W4244729596 hasConceptScore W4244729596C205649164 @default.
- W4244729596 hasConceptScore W4244729596C207201462 @default.
- W4244729596 hasConceptScore W4244729596C2779343474 @default.
- W4244729596 hasConceptScore W4244729596C2908647359 @default.
- W4244729596 hasConceptScore W4244729596C31972630 @default.
- W4244729596 hasConceptScore W4244729596C33923547 @default.
- W4244729596 hasConceptScore W4244729596C41008148 @default.
- W4244729596 hasConceptScore W4244729596C98385598 @default.
- W4244729596 hasIssue "396" @default.
- W4244729596 hasLocation W42447295961 @default.
- W4244729596 hasOpenAccess W4244729596 @default.
- W4244729596 hasPrimaryLocation W42447295961 @default.
- W4244729596 hasRelatedWork W1575793438 @default.
- W4244729596 hasRelatedWork W1963820433 @default.
- W4244729596 hasRelatedWork W2017388630 @default.
- W4244729596 hasRelatedWork W2045795433 @default.
- W4244729596 hasRelatedWork W2118753412 @default.
- W4244729596 hasRelatedWork W2254048499 @default.
- W4244729596 hasRelatedWork W2393577405 @default.
- W4244729596 hasRelatedWork W2794649148 @default.
- W4244729596 hasRelatedWork W3194026297 @default.
- W4244729596 hasRelatedWork W2118541299 @default.
- W4244729596 hasVolume "81" @default.
- W4244729596 isParatext "false" @default.
- W4244729596 isRetracted "false" @default.
- W4244729596 workType "article" @default.