Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244852903> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4244852903 endingPage "163" @default.
- W4244852903 startingPage "150" @default.
- W4244852903 abstract "Non-Hodgkin Lymphomas: Advanced Diagnostics & Personalized Therapies Radiation therapyMauro G Trovò & Carlo FurlanMauro G TrovòMauro G Trovò is a Radiation Oncologist and Director of the Radiation Therapy Department at the Centro di Riferimento Oncologico (National Cancer Institute) in Aviano (Pordenone, Italy). He served in several committees, including the EORTC Protocol Review Committee in Bruxelles, and he is member of several medical association including the EORTC and ASTRO. He is Professor on contract at the Faculty of Medicine and Surgery at the University of Udine (Udine, Italy). His clinical interests include breast cancer, prostate cancer, lung cancer and lymphomas, and the implementation of advanced radiation therapy technologies. He lectures widely on all of these topics.Search for more papers by this author & Carlo FurlanCarlo Furlan is Medical Doctor at the Radiation Oncology Department at the Centro di Riferimento Oncologico (National Cancer Institute). He worked as a Medical Doctor at the Division of Radiotherapy at the Hospital of Mestre, Venice, Italy. His experience abroad includes observer at the Princess Margaret Hospital of Toronto. Current research interests are focused on employment of low-dose radiation therapy and assessment of molecular factors predicting radiation dose-response for non-Hodgkin lymphomas.Search for more papers by this authorPublished Online:20 Jun 2013https://doi.org/10.2217/ebo.12.86AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInReddit View chapterAbstract: Radiation therapy (RT) in the care of patients with non-Hodgkin lymphoma (NHL) has entailed notable changes during the past few years. The gradual transfer of the new paradigms of radiation dose de-escalation and radiation volume reduction from clinical studies to the clinical practice, the implementation of conformal RT, the adoption of daily image-guidance and the incorporation of PET/CT-scanning coregistration have contributed to the reduction of toxicity without sacrificing the target coverage. Yet, despite the rapidly growing opportunities that technology provides, further advances in NHL oncogenesis and their fine characterization are still needed. NHL constitutes a very heterogeneous group of tumors with diverse histologies and new prognostic tools are fundamental to the radiation oncologist to establish the most appropriate therapeutic strategy. After a brief discussion of principles of radiobiology and RT techniques, treatment policies are dealt with by dividing NHLs into two main groups according to the Ann Arbor clinical classification of localized (stage I–II) and advanced (stage III–IV) NHLs. Three separate sections are then dedicated to radioimmunotherapy (RIT), primary CNS lymphoma (PCNSL) and primary cutaneous lymphomas, respectively. The chapter ends with a discussion of follow-up and quality of life in irradiated patients. References1 Thames HD , Bentzen SM , Turesson I et al. Time-dose factors in radiotherapy: a review of the human data . Radiother. Oncol. 19 , 219 – 235 (1990) . Crossref, Medline, CAS, Google Scholar2 Stewart M , Talks K , Leek R et al. Expression of angiogenic factors and hypoxia inducible factors HIF 1, HIF 2 and CA IX in non-Hodgkin’s lymphoma . Histopathology 40 (3) , 253 – 260 (2002) . Crossref, Medline, CAS, Google Scholar3 Ruan J , Hajjar K , Rafii S et al. Angiogenesis and antiangiogenic therapy in non-Hodgkin’s lymphoma . Ann. Oncol. 20 , 413 – 424 (2009) . Crossref, Medline, CAS, Google Scholar4 Metwally H , Courbon F , David I et al. Coregistration of prechemotherapy PET-CT for planning pediatric Hodgkin’s disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition . Int. J. Radiat. Oncol. Biol. Phys. 80 (3) , 793 – 799 (2011) . Crossref, Medline, Google Scholar5 Lowry L , Smith P , Qian W et al. Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: a randomised Phase III trial . Radiother. Oncol. 100 , 86 – 92 (2011) . Crossref, Medline, Google Scholar6 Ganem G , Cartron G , Girinsky T et al. Localized low-dose radiotherapy for follicular lymphoma: history, clinical results, mechanisms of action, and future outlooks . Int. J. Radiat. Oncol. Biol. Phys. 78 (4) , 975 – 982 (2010) . Crossref, Medline, Google Scholar7 Tilly H , Dreyling M . ESMO Guidelines Working Group. Diffuse large B-cell non-Hodgkin’s lymphoma: ESMO clinical recommendations for diagnosis, treatment and follow up . Ann. Oncol. 20 (Suppl. 4) , 110 – 112 (2009) . Crossref, Medline, Google Scholar8 Zelenetz AD , Advani RH , Byrd JC et al. Non-Hodgkin’s lymphomas . J. Natl Compr. Canc. Netw. 6 , 356 – 421 (2008) . Crossref, Medline, CAS, Google Scholar9 Pugh TJ , Ballonoff A , Newman F et al. Improved survival in patients with early stage low-grade follicular lymphoma treated with radiation: a surveillance, epidemiology, and end results database analysis . Cancer 116 (16) , 3843 – 3851 (2010) . Crossref, Medline, Google Scholar10 Goda JS , Gospodarowicz M , Pintilie M et al. Long-term outcome in localized extranodal mucosa-associated lymphoid tissue lymphomas treated with radiotherapy . Cancer 116 (16) , 3815 – 3824 (2010) . Crossref, Medline, Google Scholar11 Van Agthoven M , Kramer MH , Sonneveld P et al. Cost analysis of common treatment options for indolent follicular non-Hodgkin’s lymphoma . Haematologica 90 (10) , 1422 – 1432 (2005) . Medline, Google Scholar12 Tubiana M , Carde P , Burgers J et al. Prognostic factors in non-Hodgkin’s lymphoma . Int. J. Radiat. Oncol. Biol. Phys. 12 , 503 – 514 (1986) . Crossref, Medline, CAS, Google Scholar13 Shenkier TN , Voss N , Fairey R et al. Brief chemotherapy and involved-region irradiation for limited-stage diffuse large-cell lymphoma: an 18-year experience from the British Columbia Cancer Agency . J. Clin. Oncol. 20 , 197 – 204 (2002) . Crossref, Medline, CAS, Google Scholar14 Horning SJ , Weller E , Kim K et al. Chemotherapy with or without radiotherapy in limited-stage diffuse aggressive non-Hodgkin’s lymphoma: Eastern Cooperative Oncology Group study 1484 . J. Clin. Oncol. 22 , 3032 – 3038 (2004) . Crossref, Medline, CAS, Google Scholar15 Miller TP , Dahlberg S , Cassady JR et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin’s lymphoma . N. Engl. J. Med. 339 , 21 – 26 (1998) . Crossref, Medline, CAS, Google Scholar16 Campbell BA , Connors JM , Gascoyne RD et al. Limited-stage diffuse large B-cell lymphoma treated with abbreviated systemic therapy and consolidation radiotherapy: Involved-field versus involved-node radiotherapy . Cancer doi:10.1002/cncr.26687 (2012) (Epub ahead of print) . Crossref, Google Scholar17 Murtha AD , Rupnow BA , Hansosn J et al. Long-term follow-up of patients with Stage III follicular lymphoma treated with primary radiotherapy at Stanford University . Int. J. Radiat. Oncol. Biol. Phys. 49 , 3 – 15 (2001) . Crossref, Medline, CAS, Google Scholar18 Ha CS , Kong JS , Tucker SL et al. Central lymphatic irradiation for stage I-III follicular lymphoma: report from a single-institutional prospective study . Int. J. Radiat. Oncol. Biol. Phys. 57 , 316 – 320 (2003) . Crossref, Medline, Google Scholar19 Roncadin M , Arcicasa M , Zagonel V et al. Total body irradiation and prednimustine in chronic lymphocitic leukemia and low grade non-Hodgkin’s lymphomas. A 9-year experience at a sigle institution . Cancer 74 (3) , 978 – 984 (1994) . Crossref, Medline, CAS, Google Scholar20 Ferreri AJ , Dell’Oro S , Reni M et al. Consolidation radiotherapy to bulky or semibulky lesions in the management of stage III/IV diffuse large B cell lymphomas . Oncology 58 , 219 – 226 (2000) . Crossref, Medline, CAS, Google Scholar21 Avilés A , Delgado S , Nambo MJ et al. Adjuvant radiotherapy to sites of previous bulky disease in patients with stage IV diffuse large cell lymphoma . Int. J. Radiat. Oncol. Biol. Phys. 30 , 799 – 803 (1994) . Crossref, Medline, CAS, Google Scholar22 Hoppe BS , Moskowitz CH , Filippa DA et al. Involved-field radiotherapy before high-dose therapy and autologous stem-cell rescue in diffuse large-cell lymphoma: long-term disease control and toxicity . J. Clin. Oncol. 26 , 1858 – 1864 (2008) . Crossref, Medline, Google Scholar23 Oehler-Jänne C , Taverna C , Stanek N et al. Consolidative involved field radiotherapy after high dose chemotherapy and autologous stem cell transplantation for non-Hodgkin’s lymphoma: a case–control study . Hematol. Oncol. 26 (2) , 82 – 90 (2008) . Crossref, Medline, Google Scholar24 Correa DD , Shi W , Abrey LE et al. Cognitive functions in primary CNS lymphoma after single or combined modality regimens . Neuro. Oncol. 14 (1) , 101 – 108 (2012) . Crossref, Medline, CAS, Google Scholar25 Thiel E , Korfel A , Martus P et al. High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1): a Phase 3, randomised, non-inferiority trial . Lancet Oncol. 11 (11) , 1036 – 1047 (2010) . Crossref, Medline, CAS, Google Scholar26 Ferreri AJ , Verona C , Politi LS et al. Consolidation radiotherapy in primary central nervous system lymphomas: impact on outcome of different fields and doses in patients in complete remission after upfront chemotherapy . Int. J. Radiat. Oncol. Biol. Phys. 80 (1) , 169 – 175 (2011) . Crossref, Medline, Google Scholar27 Senff NJ , Hoefnagel JJ , Neelis KJ et al. Results of radiotherapy in 153 primary cutaneous B-Cell lymphomas classified according to the WHO-EORTC classification . Arch. Dermatol. 143 , 1520 – 1526 (2007) . Crossref, Medline, Google Scholar28 Morton LM , Curtis RE , Linet MS et al. Second malignancy risks after non-Hodgkin’s lymphoma and chronic lymphocytic leukemia: differences by lymphoma subtype . J. Clin. Oncol. 28 (33) , 4935 – 4944 (2010) . Crossref, Medline, Google Scholar29 Mudie NY , Swerdlow AJ , Higgins CD et al. Risk of second malignancy after non-Hodgkin’s lymphoma: a British Cohort Study . J. Clin. Oncol. 24 (10) , 1568 – 1574 (2006) . Crossref, Medline, Google Scholar30 Kriege M , Brekelmans CT , Boetes C et al. Magnetic Resonance Imaging Screening Study Group. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition . N. Engl. J. Med. 351 (5) , 427 – 437 (2004) . Crossref, Medline, CAS, Google Scholar31 Gagliardi G , Constine LS , Moiseenko V et al. Radiation dose-volume effects in the heart . Int. J. Radiat. Oncol. Biol. Phys. 76 (3) , 77 – 85 (2010) . Crossref, Google ScholarFiguresReferencesRelatedDetails Non-Hodgkin Lymphomas: Advanced Diagnostics & Personalized TherapiesMetrics Downloaded 19 times History Published online 20 June 2013 Published in print June 2013 Information© Future Medicine Ltd© Future Medicine LtdPDF download" @default.
- W4244852903 created "2022-05-12" @default.
- W4244852903 creator A5028004772 @default.
- W4244852903 creator A5048548828 @default.
- W4244852903 date "2013-06-01" @default.
- W4244852903 modified "2023-10-18" @default.
- W4244852903 title "Radiation therapy" @default.
- W4244852903 cites W1589631234 @default.
- W4244852903 cites W1967620381 @default.
- W4244852903 cites W1974404591 @default.
- W4244852903 cites W1976349193 @default.
- W4244852903 cites W1980020949 @default.
- W4244852903 cites W2005411978 @default.
- W4244852903 cites W2019016366 @default.
- W4244852903 cites W2025607885 @default.
- W4244852903 cites W2032102892 @default.
- W4244852903 cites W2052164658 @default.
- W4244852903 cites W2059287651 @default.
- W4244852903 cites W2060142613 @default.
- W4244852903 cites W2073662365 @default.
- W4244852903 cites W2078081089 @default.
- W4244852903 cites W2100008973 @default.
- W4244852903 cites W2105722841 @default.
- W4244852903 cites W2122356695 @default.
- W4244852903 cites W2126959402 @default.
- W4244852903 cites W2129423319 @default.
- W4244852903 cites W2137554921 @default.
- W4244852903 cites W2137810376 @default.
- W4244852903 cites W2138419337 @default.
- W4244852903 cites W2143351780 @default.
- W4244852903 cites W2145566956 @default.
- W4244852903 cites W2148826661 @default.
- W4244852903 cites W2166337528 @default.
- W4244852903 cites W2327610290 @default.
- W4244852903 doi "https://doi.org/10.2217/ebo.12.86" @default.
- W4244852903 hasPublicationYear "2013" @default.
- W4244852903 type Work @default.
- W4244852903 citedByCount "0" @default.
- W4244852903 crossrefType "other" @default.
- W4244852903 hasAuthorship W4244852903A5028004772 @default.
- W4244852903 hasAuthorship W4244852903A5048548828 @default.
- W4244852903 hasConcept C126322002 @default.
- W4244852903 hasConcept C509974204 @default.
- W4244852903 hasConcept C71924100 @default.
- W4244852903 hasConceptScore W4244852903C126322002 @default.
- W4244852903 hasConceptScore W4244852903C509974204 @default.
- W4244852903 hasConceptScore W4244852903C71924100 @default.
- W4244852903 hasLocation W42448529031 @default.
- W4244852903 hasOpenAccess W4244852903 @default.
- W4244852903 hasPrimaryLocation W42448529031 @default.
- W4244852903 hasRelatedWork W177678164 @default.
- W4244852903 hasRelatedWork W2056534599 @default.
- W4244852903 hasRelatedWork W2066639416 @default.
- W4244852903 hasRelatedWork W2355955825 @default.
- W4244852903 hasRelatedWork W2359001965 @default.
- W4244852903 hasRelatedWork W2382476776 @default.
- W4244852903 hasRelatedWork W2383628288 @default.
- W4244852903 hasRelatedWork W3032375220 @default.
- W4244852903 hasRelatedWork W3210497498 @default.
- W4244852903 hasRelatedWork W4281252931 @default.
- W4244852903 isParatext "false" @default.
- W4244852903 isRetracted "false" @default.
- W4244852903 workType "other" @default.