Matches in SemOpenAlex for { <https://semopenalex.org/work/W4244865678> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4244865678 abstract "Over any field an implicit linear difference equation one can reduce to the usual explicit one, which has infinitely many solutions ~ one for each initial value. It is interesting to consider an implicit difference equation over any ring, because the case of implicit equation over a ring is a significantly different from the case of explicit one. The previous results on the difference equations over rings mostly concern to the ring of integers and to the low order equations. In the present article the high order implicit difference equations over some other classes of rings, particularly, ring of polynomials, are studied. To study the difference equation over the ring of integer the idea of considering p-adic integers ~ the completion of the ring of integers with respect to the non-Archimedean p-adic valuation was useful. To find a solution of such an equation over the ring of polynomials it is naturally to consider the same construction for this ring: the ring of formal power series is a completion of the ring of polynomials with respect to a non-Archimedean valuation. The ring of formal power series and the ring of p-adic integers both are the particular cases of the valuation rings with respect to the non-Archimedean valuations of some fields: field of Laurent series and field of p-adic rational numbers respectively. In this article the implicit linear difference equation over a valuation ring of an arbitrary field with the characteristic zero and non-Archimedean valuation are studied. The sufficient conditions for the uniqueness and existence of a solution are formulated. The explicit formula for the unique solution is given, it has a form of sum of the series, converging with respect to the non-Archimedean valuation. Difference equation corresponds to an infinite system of linear equations. It is proved that in a case the implicit difference equation has a unique solution, it can be found using Cramer rules. Also in the article some results facilitating the finding the polynomial solution of the equation are given." @default.
- W4244865678 created "2022-05-12" @default.
- W4244865678 date "2021-01-01" @default.
- W4244865678 modified "2023-10-18" @default.
- W4244865678 title "Implicit linear difference equations over a non-Archi-medean ring" @default.
- W4244865678 cites W2490695516 @default.
- W4244865678 cites W2802320736 @default.
- W4244865678 cites W2895508108 @default.
- W4244865678 cites W2995919617 @default.
- W4244865678 cites W4239483710 @default.
- W4244865678 cites W4252614677 @default.
- W4244865678 doi "https://doi.org/10.26565/2221-5646-2021-93-03" @default.
- W4244865678 hasPublicationYear "2021" @default.
- W4244865678 type Work @default.
- W4244865678 citedByCount "1" @default.
- W4244865678 countsByYear W42448656782022 @default.
- W4244865678 crossrefType "journal-article" @default.
- W4244865678 hasBestOaLocation W42448656781 @default.
- W4244865678 hasConcept C10138342 @default.
- W4244865678 hasConcept C118615104 @default.
- W4244865678 hasConcept C12657307 @default.
- W4244865678 hasConcept C134306372 @default.
- W4244865678 hasConcept C151746172 @default.
- W4244865678 hasConcept C156923205 @default.
- W4244865678 hasConcept C162324750 @default.
- W4244865678 hasConcept C164810661 @default.
- W4244865678 hasConcept C178790620 @default.
- W4244865678 hasConcept C184311908 @default.
- W4244865678 hasConcept C185592680 @default.
- W4244865678 hasConcept C186027771 @default.
- W4244865678 hasConcept C200802036 @default.
- W4244865678 hasConcept C202444582 @default.
- W4244865678 hasConcept C2780378348 @default.
- W4244865678 hasConcept C33923547 @default.
- W4244865678 hasConcept C73905626 @default.
- W4244865678 hasConcept C83920498 @default.
- W4244865678 hasConcept C90119067 @default.
- W4244865678 hasConcept C9485509 @default.
- W4244865678 hasConcept C9652623 @default.
- W4244865678 hasConceptScore W4244865678C10138342 @default.
- W4244865678 hasConceptScore W4244865678C118615104 @default.
- W4244865678 hasConceptScore W4244865678C12657307 @default.
- W4244865678 hasConceptScore W4244865678C134306372 @default.
- W4244865678 hasConceptScore W4244865678C151746172 @default.
- W4244865678 hasConceptScore W4244865678C156923205 @default.
- W4244865678 hasConceptScore W4244865678C162324750 @default.
- W4244865678 hasConceptScore W4244865678C164810661 @default.
- W4244865678 hasConceptScore W4244865678C178790620 @default.
- W4244865678 hasConceptScore W4244865678C184311908 @default.
- W4244865678 hasConceptScore W4244865678C185592680 @default.
- W4244865678 hasConceptScore W4244865678C186027771 @default.
- W4244865678 hasConceptScore W4244865678C200802036 @default.
- W4244865678 hasConceptScore W4244865678C202444582 @default.
- W4244865678 hasConceptScore W4244865678C2780378348 @default.
- W4244865678 hasConceptScore W4244865678C33923547 @default.
- W4244865678 hasConceptScore W4244865678C73905626 @default.
- W4244865678 hasConceptScore W4244865678C83920498 @default.
- W4244865678 hasConceptScore W4244865678C90119067 @default.
- W4244865678 hasConceptScore W4244865678C9485509 @default.
- W4244865678 hasConceptScore W4244865678C9652623 @default.
- W4244865678 hasIssue "93" @default.
- W4244865678 hasLocation W42448656781 @default.
- W4244865678 hasOpenAccess W4244865678 @default.
- W4244865678 hasPrimaryLocation W42448656781 @default.
- W4244865678 hasRelatedWork W1488395534 @default.
- W4244865678 hasRelatedWork W2025287135 @default.
- W4244865678 hasRelatedWork W2055960097 @default.
- W4244865678 hasRelatedWork W2073046884 @default.
- W4244865678 hasRelatedWork W2351331038 @default.
- W4244865678 hasRelatedWork W2368218263 @default.
- W4244865678 hasRelatedWork W3034388643 @default.
- W4244865678 hasRelatedWork W3103445057 @default.
- W4244865678 hasRelatedWork W4244865678 @default.
- W4244865678 hasRelatedWork W4287758831 @default.
- W4244865678 isParatext "false" @default.
- W4244865678 isRetracted "false" @default.
- W4244865678 workType "article" @default.