Matches in SemOpenAlex for { <https://semopenalex.org/work/W4245137104> ?p ?o ?g. }
- W4245137104 endingPage "1131" @default.
- W4245137104 startingPage "1118" @default.
- W4245137104 abstract "There are numerous applications across all the spectrum of scientific areas that demand the mathematical study of signals/data. The two typical study areas of theoretical research on signal/data processing are of modeling (i.e., understanding of signal's behavior) and of analysis (i.e., evaluation of given signal for finding its association to existing signal models). The objective of this paper is to provide a stochastic framework to design both fuzzy filtering and analysis algorithms in a unified manner. The signals are modeled via linear-in-parameters models (e.g., a type of Takagi-Sugeno fuzzy model) based on variational Bayes (VB) methodology. This gives rise to the negative free energy maximizing filtering algorithm. The issue of intractability was handled first by carefully choosing the priors as conjugate to the likelihood and then by using Stirling approximation for the Gamma function. This paper highlighted that it was analytically possible to maximize the information theoretic quantity, mutual information, exactly in the same manner as maximizing negative free energy in VB methodology. This gives rise to the variational information maximizing analysis algorithm. The robustness of the methodology against data outliers is achieved by modeling the noises with Student- t distributions. The framework takes into account the inputs noises as well apart from the usually considered output noise. The robustness of the adaptive filtering algorithm against noise is shown by a deterministic analysis where an upper bound on the magnitude of estimation errors is derived." @default.
- W4245137104 created "2022-05-12" @default.
- W4245137104 creator A5044522153 @default.
- W4245137104 creator A5046933902 @default.
- W4245137104 creator A5090279468 @default.
- W4245137104 date "2016-05-01" @default.
- W4245137104 modified "2023-10-16" @default.
- W4245137104 title "A Stochastic Framework for Robust Fuzzy Filtering and Analysis of Signals—Part I" @default.
- W4245137104 cites W1496451467 @default.
- W4245137104 cites W1581423902 @default.
- W4245137104 cites W1959421043 @default.
- W4245137104 cites W1966213225 @default.
- W4245137104 cites W1966945287 @default.
- W4245137104 cites W1969408578 @default.
- W4245137104 cites W1981796042 @default.
- W4245137104 cites W1983968342 @default.
- W4245137104 cites W1984534228 @default.
- W4245137104 cites W1984794457 @default.
- W4245137104 cites W1993498385 @default.
- W4245137104 cites W2010731670 @default.
- W4245137104 cites W2012299073 @default.
- W4245137104 cites W2024000733 @default.
- W4245137104 cites W2031319431 @default.
- W4245137104 cites W2033213387 @default.
- W4245137104 cites W2034766557 @default.
- W4245137104 cites W2068743116 @default.
- W4245137104 cites W2079732597 @default.
- W4245137104 cites W2090729373 @default.
- W4245137104 cites W2094440670 @default.
- W4245137104 cites W2096991709 @default.
- W4245137104 cites W2097430704 @default.
- W4245137104 cites W2099908750 @default.
- W4245137104 cites W2104381981 @default.
- W4245137104 cites W2111559175 @default.
- W4245137104 cites W2112195879 @default.
- W4245137104 cites W2115581169 @default.
- W4245137104 cites W2116171417 @default.
- W4245137104 cites W2117022519 @default.
- W4245137104 cites W2117446031 @default.
- W4245137104 cites W2128266155 @default.
- W4245137104 cites W2129629388 @default.
- W4245137104 cites W2136390670 @default.
- W4245137104 cites W2149668177 @default.
- W4245137104 cites W2150888205 @default.
- W4245137104 cites W2154940917 @default.
- W4245137104 cites W2163845070 @default.
- W4245137104 cites W2168990926 @default.
- W4245137104 cites W2172087157 @default.
- W4245137104 cites W2309900200 @default.
- W4245137104 cites W4234789958 @default.
- W4245137104 cites W2111026029 @default.
- W4245137104 doi "https://doi.org/10.1109/tcyb.2015.2423657" @default.
- W4245137104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25955860" @default.
- W4245137104 hasPublicationYear "2016" @default.
- W4245137104 type Work @default.
- W4245137104 citedByCount "12" @default.
- W4245137104 countsByYear W42451371042016 @default.
- W4245137104 countsByYear W42451371042017 @default.
- W4245137104 countsByYear W42451371042018 @default.
- W4245137104 countsByYear W42451371042020 @default.
- W4245137104 countsByYear W42451371042021 @default.
- W4245137104 countsByYear W42451371042022 @default.
- W4245137104 crossrefType "journal-article" @default.
- W4245137104 hasAuthorship W4245137104A5044522153 @default.
- W4245137104 hasAuthorship W4245137104A5046933902 @default.
- W4245137104 hasAuthorship W4245137104A5090279468 @default.
- W4245137104 hasConcept C104317684 @default.
- W4245137104 hasConcept C107673813 @default.
- W4245137104 hasConcept C11413529 @default.
- W4245137104 hasConcept C115961682 @default.
- W4245137104 hasConcept C126255220 @default.
- W4245137104 hasConcept C154945302 @default.
- W4245137104 hasConcept C177769412 @default.
- W4245137104 hasConcept C185592680 @default.
- W4245137104 hasConcept C33923547 @default.
- W4245137104 hasConcept C41008148 @default.
- W4245137104 hasConcept C55493867 @default.
- W4245137104 hasConcept C58166 @default.
- W4245137104 hasConcept C63479239 @default.
- W4245137104 hasConcept C79337645 @default.
- W4245137104 hasConcept C99498987 @default.
- W4245137104 hasConceptScore W4245137104C104317684 @default.
- W4245137104 hasConceptScore W4245137104C107673813 @default.
- W4245137104 hasConceptScore W4245137104C11413529 @default.
- W4245137104 hasConceptScore W4245137104C115961682 @default.
- W4245137104 hasConceptScore W4245137104C126255220 @default.
- W4245137104 hasConceptScore W4245137104C154945302 @default.
- W4245137104 hasConceptScore W4245137104C177769412 @default.
- W4245137104 hasConceptScore W4245137104C185592680 @default.
- W4245137104 hasConceptScore W4245137104C33923547 @default.
- W4245137104 hasConceptScore W4245137104C41008148 @default.
- W4245137104 hasConceptScore W4245137104C55493867 @default.
- W4245137104 hasConceptScore W4245137104C58166 @default.
- W4245137104 hasConceptScore W4245137104C63479239 @default.
- W4245137104 hasConceptScore W4245137104C79337645 @default.
- W4245137104 hasConceptScore W4245137104C99498987 @default.
- W4245137104 hasIssue "5" @default.
- W4245137104 hasLocation W42451371041 @default.