Matches in SemOpenAlex for { <https://semopenalex.org/work/W4245196633> ?p ?o ?g. }
Showing items 1 to 43 of
43
with 100 items per page.
- W4245196633 endingPage "833" @default.
- W4245196633 startingPage "826" @default.
- W4245196633 abstract "In the field of medical imaging, the segmentation and classification of brain tumors is a complex and important area of studies because it is essential for the intention of early tumor diagnosing and treatment of brain tumors and other neurologic complaints. Earlier segmentation methods require huge number of iterations, longer time and a reduced accuracy. Therefore, this article proposes a multi-stage strategy whereby tumor segmentation and classification can be accurately performed with lower error rate. The proposed system incorporates three phases such as prediction, segmentation along with morphological operations to solve the discontinuities. The proposed segmentation method is named as Self Organisation Based Segmentation (SOBS) method. It is compared with some of the deformable models in literature. Next Use the Gray Level Cooccurrence Matrix to extract features. Finally Use the Gray Level Co-occurrence Matrix to extract features and classify them into normal or abnormal. If it is classified as abnormal, then again classify into glioma or meningioma. The performance metrics such as accuracy, PSNR and MSE are used for scrutinize the performance of these methods. From the investigational outcomes, the classification accuracy was found to be very high using the proposed segmentation method SOBS with the Random Forest (RF) Classifier." @default.
- W4245196633 created "2022-05-12" @default.
- W4245196633 date "2019-10-30" @default.
- W4245196633 modified "2023-09-23" @default.
- W4245196633 title "An Efficient Brain Tumor Classification Based on SOBS Method for MRI Brain Images" @default.
- W4245196633 doi "https://doi.org/10.35940/ijeat.a9379.109119" @default.
- W4245196633 hasPublicationYear "2019" @default.
- W4245196633 type Work @default.
- W4245196633 citedByCount "0" @default.
- W4245196633 crossrefType "journal-article" @default.
- W4245196633 hasBestOaLocation W42451966331 @default.
- W4245196633 hasConcept C153180895 @default.
- W4245196633 hasConcept C154945302 @default.
- W4245196633 hasConcept C169258074 @default.
- W4245196633 hasConcept C41008148 @default.
- W4245196633 hasConcept C89600930 @default.
- W4245196633 hasConcept C95623464 @default.
- W4245196633 hasConceptScore W4245196633C153180895 @default.
- W4245196633 hasConceptScore W4245196633C154945302 @default.
- W4245196633 hasConceptScore W4245196633C169258074 @default.
- W4245196633 hasConceptScore W4245196633C41008148 @default.
- W4245196633 hasConceptScore W4245196633C89600930 @default.
- W4245196633 hasConceptScore W4245196633C95623464 @default.
- W4245196633 hasIssue "1" @default.
- W4245196633 hasLocation W42451966331 @default.
- W4245196633 hasOpenAccess W4245196633 @default.
- W4245196633 hasPrimaryLocation W42451966331 @default.
- W4245196633 hasRelatedWork W11524489 @default.
- W4245196633 hasRelatedWork W13002769 @default.
- W4245196633 hasRelatedWork W1679810 @default.
- W4245196633 hasRelatedWork W2185224 @default.
- W4245196633 hasRelatedWork W2583009 @default.
- W4245196633 hasRelatedWork W2834797 @default.
- W4245196633 hasRelatedWork W3038986 @default.
- W4245196633 hasRelatedWork W844961 @default.
- W4245196633 hasRelatedWork W915898 @default.
- W4245196633 hasRelatedWork W9641522 @default.
- W4245196633 hasVolume "9" @default.
- W4245196633 isParatext "false" @default.
- W4245196633 isRetracted "false" @default.
- W4245196633 workType "article" @default.