Matches in SemOpenAlex for { <https://semopenalex.org/work/W4245471189> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4245471189 endingPage "263" @default.
- W4245471189 startingPage "257" @default.
- W4245471189 abstract "Free Access References Oksana Banna, Oksana BannaSearch for more papers by this authorYuliya Mishura, Yuliya MishuraSearch for more papers by this authorKostiantyn Ralchenko, Kostiantyn RalchenkoSearch for more papers by this authorSergiy Shklyar, Sergiy ShklyarSearch for more papers by this author Book Author(s):Oksana Banna, Oksana BannaSearch for more papers by this authorYuliya Mishura, Yuliya MishuraSearch for more papers by this authorKostiantyn Ralchenko, Kostiantyn RalchenkoSearch for more papers by this authorSergiy Shklyar, Sergiy ShklyarSearch for more papers by this author First published: 08 April 2019 https://doi.org/10.1002/9781119476771.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abry P., Sellan F., “The wavelet-based synthesis for fractional Brownian motion proposed by Sellan F. and Meyer Y.: Remarks and fast implementation”, Applied and Computational Harmonic Analysis, vol. 3, no. 4, pp. 377– 383, 1996. Androshchuk T.O., “Approximation of a stochastic integral with respect to fractional Brownian motion by integrals with respect to absolutely continuous processes”, Theory of Probability and Mathematical Statistics, vol. 73, pp. 19– 29, 2006. Ayache A., Taqqu M.S., “Rate optimality of wavelet series approximations of fractional Brownian motion”, Journal of Fourier Analysis and Applications, vol. 9, no. 5, pp. 451– 471, 2003. Banna O., Mishura Y., “Approximation of fractional Brownian motion with associated Hurst index separated from 1 by stochastic integrals of linear power functions”, Theory of Stochastic Processes, vol. 14, nos 3–4, pp. 1– 16, 2008. Banna O.L., Mishura Y.S., “A bound for the distance between fractional Brownian motion and the space of Gaussian martingales on an interval”, Theory of Probability and Mathematical Statistics, vol. 83, pp. 13– 25, 2011. Banna O.L., Mishura Y.S., Shklyar S.V., “Approximation of a Wiener process by integrals with respect to the fractional Brownian motion of power functions of a given exponent”, Theory of Probability and Mathematical Statistics, vol. 90, pp. 13– 22, 2015. Barnett S., Matrices: Methods and Applications, Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York, 1990. Bardet J.-M., Lang G., Oppenheim G. et al., “Generators of long-range dependent processes: A survey”, Theory and Applications of Long-range Dependence, pp. 579– 623, Birkhäuser Boston, Boston, MA, 2003. Bashirov A.E., Partially Observable Linear Systems Under Dependent Noises, Systems & Control: Foundations & Applications, Birkhäuser Verlag, Basel, 2003. Benassi A., Jaffard S., Roux D., “Elliptic Gaussian random processes”, Revista Mathemática Iberoamericana, vol. 13, no. 1, pp. 19– 90, 1997. Biagini F., Hu Y., ØKsendal B. et al., Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008. Botkin N.D., Turova-Botkina V.L., “An algorithm for finding the Chebyshev center of a convex polyhedron”, System Modelling and Optimization, vol. 197 of Lecture Notes in Control and Information Sciences, pp. 833– 844, Springer, 1993. Boufoussi B., Dozzi M., Marty R., “Local time and Tanaka formula for a Volterra-type multifractional Gaussian process”, Bernoulli, vol. 16, no. 4, pp. 1294– 1311, 2010. Chang C.-I., Hyperspectral Imaging: Techniques for Spectral Detection and Classification, Kluwer, New York, 2003. Chan N.H., Wong H.Y., Simulation Techniques in Financial Risk Management, Wiley, 2015. Chen C., Sun L., Yan L., “An approximation to the Rosenblatt process using martingale differences”, Statistics & Probability Letters, vol. 82, no. 4, pp. 748– 757, 2012. Coeurjolly J.-F., “Simulation and Identification of the Fractional Brownian Motion: A bibliographical and comparative study”, Journal of Statistical Software, vol. 5, pp. 1– 53, 2000. Cohen S., “From self-similarity to local self-similarity: The estimation problem”, Fractals: Theory and Applications in Engineering, pp. 3– 16, Springer, London, 1999. Cottle R.W., “William Karush and the KKT theorem”, M. Grötschnel (ed.), Optimization Stories, pp. 255– 269, Deutschen Mathematiker-Vereinigung, Berlin, Documenta Mathematica, Extra Volume, 2012. Courant R., Differential and Integral Calculus, vol. 1, Wiley, Hoboken, NJ, 1988. Crouse M., Baraniuk R.G., “Fast, exact synthesis of Gaussian and nonGaussian long-range-dependent processes”, IEEE Transactions on Information Theory, 1999. Davies R.B., Harte D.S., “Tests for Hurst effect”, Biometrika, vol. 74, no. 1, pp. 95– 101, 1987. Davis M.H.A., “Martingale representation and all that”, Advances in Control, Communication Networks, and Transportation Systems, Systems Control Found. Appl., pp. 57– 68, Birkhäuser Boston, Boston, MA, 2005. Dietrich C.R., Newsam G.N., “Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix”, SIAM Journal on Scientific Computing, vol. 18, no. 4, pp. 1088– 1107, 1997. Dieker T., Simulation of Fractional Brownian Motion, Master's thesis, Vrije Universiteit, Amsterdam, 2002. Dieker A.B., Mandjes M., “On spectral simulation of fractional Brownian motion”, Probability in the Engineering and Informational Sciences, vol. 17, no. 3, pp. 417– 434, 2003. Doroshenko V., Mishura Y., Banna O., “The distance between fractional Brownian motion and the subspace of martingales with “similar” kernels”, Theory of Probability and Mathematical Statistics, vol. 87, pp. 41– 49, 2013. Dung N.T., “Semimartingale approximation of fractional Brownian motion and its applications”, Computers & Mathematics with Applications, vol. 61, no. 7, pp. 1844– 1854, 2011. Feder J., Fractals, Physics of Solids and Liquids, Plenum Press, New York, 1988. Fikhtengol'ts G.M., The Fundamentals of Mathematical Analysis. Vol. II, vol. 73 of International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, 1965. Garsia A.M., Rodemich E., Rumsey Jr. H., “A real variable lemma and the continuity of paths of some Gaussian processes”, Indiana University Mathematics Journal, vol. 20, pp. 565– 578, 1970/1971. Garsia A.M., Rodemich E., “Monotonicity of certain functionals under rearrangement”, Annales de l'Institut, vol. 24, no. 2, pp. vi, 67– 116, 1974, Colloque International sur les Processus Gaussiens et les Distributions Aléatoires (Colloque Internat. du CNRS, No. 222, Strasbourg, 1973). Gorodeckiĭ V.V., “On convergence to semi-stable Gaussian processes”, Theory of Probability and its Applications, vol. 22, no. 3, pp. 498– 508, 1978. Granger C.W.J., “Long memory relationships and the aggregation of dynamic models”, Journal of Econometrics, vol. 14, no. 2, pp. 227– 238, 1980. Horn R.A., Johnson C.R., Matrix Analysis, Cambridge University Press, Cambridge, 1990, Corrected reprint of the 1985 original. Hosking J.R.M., “Modeling persistence in hydrological time series using fractional differencing”, Water Resources Research, vol. 20, no. 12, pp. 1898– 1908, 1984. Kozachenko Y.V., Pashko A.O., Vasylyk O.I., “Simulation of fractional Brownian motion in the space Lp([0, T])”, Theory of Probability and Mathematical Statistics, vol. 97, 2018. Kroese D.P., Botev Z.I., “Spatial process simulation”, Stochastic Geometry, Spatial Statistics and Random Fields, vol. 2120 of Lecture Notes in Math., pp. 369– 404, Springer, Cham, 2015. Kubilius K., Mishura Y., Ralchenko K., Parameter Estimation in Fractional Diffusion Models, vol. 8 of Bocconi & Springer Series, Bocconi University Press, [Milan]; Springer, Cham, 2017. Kuhn H.W., Tucker A.W., “ Nonlinear programming”, J. Neyman (ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 481– 492, University of California, Berkeley, 1951. Le Breton A., “Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion”, Statistics & Probability Letters, vol. 38, no. 3, pp. 263– 274, 1998. Liptser R.S., Shiryayev A.N., Theory of Martingales, vol. 49 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1989. Liptser R.S., Shiryaev A.N., Statistics of Random Processes. II. Applications, vol. 6 of Applications of Mathematics (New York), Springer-Verlag, Berlin, 2001. Lowen S.B., “Efficient generation of fractional Brownian motion for simulation of infrared focal-plane array calibration drift”, Methodology and Computing in Applied Probability, vol. 1, no. 4, pp. 445– 456, 1999. Mandelbrot B.B., Van Ness J.W., “Fractional Brownian motions, fractional noises and applications”, SIAM Reviews, vol. 10, pp. 422– 437, 1968. Mandelbrot B.B., Wallis J.R., “Computer experiments with fractional Gaussian noises: Parts 1, 2, 3”, Water Resources Research, vol. 5, pp. 228– 267, 1969. Meyer Y., Sellan F., Taqqu M.S., “Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion”, Journal of Fourier Analysis and Applications, vol. 5, no. 5, pp. 465– 494, 1999. Mishura Y.S., Stochastic Calculus for Fractional Brownian Motion and Related Processes, vol. 1929 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2008. Mishura Y.S., Banna O.L., “Approximation of fractional Brownian motion by Wiener integrals”, Theory of Probability and Mathematical Statistics, vol. 79, pp. 107– 116, 2009. Mishura Y., Shevchenko G., Theory and Statistical Applications of Stochastic Processes, ISTE Ltd and John Wiley & Sons, Inc., 2017. Mishura Y., Zili M., Stochastic Analysis of Mixed Fractional Gaussian Processes, ISTE Press Ltd, London and Elsevier Ltd, Oxford, 2018. Muravlëv A.A., “Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process”, Russian Math. Surveys, vol. 66, no. 2, pp. 439– 441, 2011. Nieminen A., “Fractional Brownian motion and martingale-differences”, Statistics & Probability Letters, vol. 70, no. 1, pp. 1– 10, 2004. Norros I., Mannersalo P., Wang J.L., “Simulation of fractional Brownian motion with conditionalized random midpoint displacement”, Advances in Performance Analysis, vol. 2, no. 1, pp. 77– 101, 1999. Norros I., Valkeila E., Virtamo J., “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions”, Bernoulli, vol. 5, no. 4, pp. 571– 587, 1999. Nourdin I., Selected Aspects of Fractional Brownian Motion, vol. 4 of Bocconi & Springer Series, Springer, Milan; Bocconi University Press, Milan, 2012. Nualart D., Rascanu A., “Differential equations driven by fractional Brownian motion”, Collectanea Mathematica, vol. 53, no. 1, pp. 55– 81, 2002. Nualart D., “Stochastic integration with respect to fractional Brownian motion and applications”, Stochastic Models (Mexico City, 2002), vol. 336 of Communications in Contemporary Mathematics, pp. 3– 39, American Mathematical Society, Providence, RI, 2003. Olver F. W.J., Asymptotics and Special Functions, Academic Press, San Diego, CA, 1974. Paxson V., “Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic”, ACM SIGCOMM Computer Communication Review, vol. 27, no. 5, pp. 5– 18, 1997. Peltier R.-F., Lévy Véhel J., “Multifractional Brownian motion: Definition and preliminary results”, INRIA Research Report, vol. 2645, 1995. Perrin E., Harba R., Jennane R. et al., “Fast and exact synthesis for 1-D fractional Brownian motion and fractional Gaussian noises”, IEEE Signal Processing Letters, vol. 9, no. 11, pp. 382– 384, 2002. Pipiras V., “ On the usefulness of wavelet-based simulation of fractional Brownian motion”, Preprint. Available at: http://www.stat.unc.edu/faculty/pipiras, 2004. Pipiras V., “Wavelet-based simulation of fractional Brownian motion revisited”, Applied and Computational Harmonic Analysis, vol. 19, no. 1, pp. 49– 60, 2005. Protter P.E., Stochastic Integration and Differential Equations, vol. 21 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2005. Ralchenko K.V., Shevchenko G.M., “Path properties of multifractal Brownian motion”, Theory of Probability and Mathematical Statistics, vol. 80, pp. 119– 130, 2010. Ralchenko K.V., “Approximation of multifractional Brownian motion by absolutely continuous processes”, Theory of Probability and Mathematical Statistics, vol. 82, pp. 115– 127, 2011. Ralchenko K.V., Shevchenko G.M., “Approximation of solutions of stochastic differential equations with fractional Brownian motion by solutions of random ordinary differential equations”, Ukrainian Mathematical Journal, vol. 62, no. 9, pp. 1460– 1475, 2011. Ralchenko K.V., Shevchenko G.M., “Smooth approximations for fractional and multifractional fields”, Random Operators and Stochastic Equations, vol. 20, no. 3, pp. 209– 232, 2012. Samorodnitsky G., Taqqu M.S., Stable Non-Gaussian Random Processes, Stochastic Modeling, Chapman & Hall, New York, 1994, Stochastic models with infinite variance. Samorodnitsky G., “Long range dependence”, Foundations and Trends(R) in Stochastic Systems, vol. 1, no. 3, pp. 163– 257, 2006. Schechter E., Handbook of Analysis and Its Foundations, Academic Press, Inc., San Diego, CA, 1997. Sellan F., “Synthèse de mouvements browniens fractionnaires à l'aide de la transformation par ondelettes”, C. R. Acad. Sci. Paris Sér. I Math., vol. 321, no. 3, pp. 351– 358, 1995. Shevchenko G., “ Fractional Brownian motion in a nutshell”, Analysis of Fractional Stochastic Processes, vol. 36 of International Journal of Modern Physics: Conference Series, Pageid. 1560002, World Science Publishing, Hackensack, NJ, 2015. Shen G., Yin X., Yan L., “Approximation of the Rosenblatt sheet”, Mediterranean Journal of Mathematics, vol. 13, no. 4, pp. 2215– 2227, 2016. Shklyar S., Shevchenko G., Mishura Y. et al., “Approximation of fractional Brownian motion by martingales”, Methodology and Computing in Applied Probability, vol. 16, no. 3, pp. 539– 560, 2014. Taqqu M.S., “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 31, pp. 287– 302, 1974/75. Voss R.F., “Fractals in nature: from characterization to simulation”, The Science of Fractal Images, pp. 21– 70, Springer, 1988. Willinger W., Paxson V., Riedi R.H. et al., “Long-range dependence and data network traffic”, Theory and Applications of Long-range Dependence, pp. 373– 407, Birkhäuser Boston, Boston, MA, 2003. Wolfe P., “Finding the nearest point in a polytope”, Mathematical Programming , vol. 11, pp. 128– 149, 1976. Wood A. T.A., Chan G., “Simulation of stationary Gaussian processes in [0,1]d ”, Journal of Computational and Graphical Statistics, vol. 3, no. 4, pp. 409– 432, 1994. Yan L., Li Y., Wu D., “Approximating the Rosenblatt process by multiple Wiener integrals”, Electronic Communications in Probability, vol. 20, no. 11, pp. 1– 16, 2015. Zähle M., “Integration with respect to fractal functions and stochastic calculus. I”, Probability Theory and Related Fields, vol. 111, no. 3, pp. 333– 374, 1998. Zähle M., “On the link between fractional and stochastic calculus”, Stochastic dynamics (Bremen, 1997), pp. 305– 325, Springer, New York, 1999. Fractional Brownian Motion: Approximations and Projections ReferencesRelatedInformation" @default.
- W4245471189 created "2022-05-12" @default.
- W4245471189 date "2019-04-08" @default.
- W4245471189 modified "2023-09-26" @default.
- W4245471189 title "References" @default.
- W4245471189 cites W1458695360 @default.
- W4245471189 cites W1594506861 @default.
- W4245471189 cites W1600831658 @default.
- W4245471189 cites W1734750670 @default.
- W4245471189 cites W19324722 @default.
- W4245471189 cites W1967071544 @default.
- W4245471189 cites W1976528994 @default.
- W4245471189 cites W1979382076 @default.
- W4245471189 cites W1982672936 @default.
- W4245471189 cites W1985968255 @default.
- W4245471189 cites W1992586477 @default.
- W4245471189 cites W1993798777 @default.
- W4245471189 cites W1995522593 @default.
- W4245471189 cites W2001908423 @default.
- W4245471189 cites W2003427294 @default.
- W4245471189 cites W2005071641 @default.
- W4245471189 cites W2007504260 @default.
- W4245471189 cites W2010647896 @default.
- W4245471189 cites W2013701106 @default.
- W4245471189 cites W2026237857 @default.
- W4245471189 cites W2031753087 @default.
- W4245471189 cites W2032774605 @default.
- W4245471189 cites W2037265560 @default.
- W4245471189 cites W2038836340 @default.
- W4245471189 cites W2040337767 @default.
- W4245471189 cites W2042786029 @default.
- W4245471189 cites W2045404766 @default.
- W4245471189 cites W2049143678 @default.
- W4245471189 cites W2058187934 @default.
- W4245471189 cites W2059525708 @default.
- W4245471189 cites W2061966562 @default.
- W4245471189 cites W2062461052 @default.
- W4245471189 cites W2065096983 @default.
- W4245471189 cites W2079559649 @default.
- W4245471189 cites W2095209441 @default.
- W4245471189 cites W2111976694 @default.
- W4245471189 cites W2112228270 @default.
- W4245471189 cites W2114939640 @default.
- W4245471189 cites W2124357853 @default.
- W4245471189 cites W2144328044 @default.
- W4245471189 cites W2164158481 @default.
- W4245471189 cites W2188606345 @default.
- W4245471189 cites W229797166 @default.
- W4245471189 cites W2494788988 @default.
- W4245471189 cites W2772443044 @default.
- W4245471189 cites W2782077593 @default.
- W4245471189 cites W2964293039 @default.
- W4245471189 cites W3010098330 @default.
- W4245471189 cites W3028684788 @default.
- W4245471189 cites W3104124883 @default.
- W4245471189 cites W371541445 @default.
- W4245471189 cites W4246691617 @default.
- W4245471189 cites W4248253651 @default.
- W4245471189 cites W4249599116 @default.
- W4245471189 cites W588973965 @default.
- W4245471189 cites W66305751 @default.
- W4245471189 cites W6828216 @default.
- W4245471189 cites W98016743 @default.
- W4245471189 doi "https://doi.org/10.1002/9781119476771.refs" @default.
- W4245471189 hasPublicationYear "2019" @default.
- W4245471189 type Work @default.
- W4245471189 citedByCount "0" @default.
- W4245471189 crossrefType "other" @default.
- W4245471189 hasBestOaLocation W42454711891 @default.
- W4245471189 hasConcept C185592680 @default.
- W4245471189 hasConceptScore W4245471189C185592680 @default.
- W4245471189 hasLocation W42454711891 @default.
- W4245471189 hasOpenAccess W4245471189 @default.
- W4245471189 hasPrimaryLocation W42454711891 @default.
- W4245471189 hasRelatedWork W1531601525 @default.
- W4245471189 hasRelatedWork W2319480705 @default.
- W4245471189 hasRelatedWork W2384464875 @default.
- W4245471189 hasRelatedWork W2398689458 @default.
- W4245471189 hasRelatedWork W2606230654 @default.
- W4245471189 hasRelatedWork W2607424097 @default.
- W4245471189 hasRelatedWork W2748952813 @default.
- W4245471189 hasRelatedWork W2899084033 @default.
- W4245471189 hasRelatedWork W2948807893 @default.
- W4245471189 hasRelatedWork W2778153218 @default.
- W4245471189 isParatext "false" @default.
- W4245471189 isRetracted "false" @default.
- W4245471189 workType "other" @default.