Matches in SemOpenAlex for { <https://semopenalex.org/work/W4245654360> ?p ?o ?g. }
- W4245654360 abstract "<sec> <title>BACKGROUND</title> Bipolar disorder (BD) is the tenth common cause of frailty in young individuals and has triggered morbidity and mortality worldwide. BD patients have 9–17 years lower lifetime as compared to the normal population. It is a predominant mental disorder but misdiagnosed as depressive disorder that leads to difficulties in the treatment of affected patients. 60% of patients with bipolar disorder are looking for the treatment of depression. However, machine learning provides advanced skills and techniques for the better diagnosis of bipolar disorder. </sec> <sec> <title>OBJECTIVE</title> This review aims to explore the machine learning algorithms for the detection and diagnosis of bipolar disorder and its subtypes. </sec> <sec> <title>METHODS</title> The study protocol adapts PRISMA extension guidelines. It explores three databases, which were Google scholar, ScienceDirect, and PubMed. To enhance the search, we performed backward screening of all the references of the included studies. Based on the predefined selection criteria, two levels of screening were carried out: the title and abstract review and the full review of the articles that met the inclusion criteria. Data extraction was performed independently by all investigators. To synthesize the extracted data, a narrative synthesis approach was followed. </sec> <sec> <title>RESULTS</title> 573 potential articles were retrieved from three databases. After pre-processing and screening, only 33 articles were identified, which met our inclusion criteria. The most commonly used data belonged to the clinical category (n=22, 66.66%). We identified 8 machine learning models used in the selected studies, Support-vector machines (n=9, 27%), Artificial neural network (n=4, 12.12%) , Linear regression (n=3, 0.9%) , Gaussian process model (n=2, 0.6%), Ensemble model (n=2, 0.6%) , Natural language processing (n=1, 0.3%), Probabilistic Methods (n=1, 0.3%), and Logistic regression (n=1, 0.35%). The most common data utilized was magnetic resonance imaging (MRI) for classifying bipolar patients compared to other groups (n=11, 34%) while the least common utilized data was microarray expression dataset and genomic data. The maximum ratio of accuracy was 98% while the minimum accuracy range was 64%. </sec> <sec> <title>CONCLUSIONS</title> This scoping review provides an overview of recent studies based on machine learning models used to diagnose bipolar disorder patients regardless of their demographics or if they were assessed compared to patients with psychiatric diagnoses. Further research can be conducted for clinical decision support in the health industry. </sec> <sec> <title>CLINICALTRIAL</title> Null </sec>" @default.
- W4245654360 created "2022-05-12" @default.
- W4245654360 creator A5001592898 @default.
- W4245654360 creator A5020810020 @default.
- W4245654360 creator A5055523664 @default.
- W4245654360 creator A5057926319 @default.
- W4245654360 creator A5077748404 @default.
- W4245654360 creator A5082044722 @default.
- W4245654360 date "2021-04-19" @default.
- W4245654360 modified "2023-09-23" @default.
- W4245654360 title "The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review (Preprint)" @default.
- W4245654360 cites W2150692529 @default.
- W4245654360 cites W2198940986 @default.
- W4245654360 cites W2202941903 @default.
- W4245654360 cites W2275336702 @default.
- W4245654360 cites W2520682644 @default.
- W4245654360 cites W2558314395 @default.
- W4245654360 cites W2564048406 @default.
- W4245654360 cites W2570274188 @default.
- W4245654360 cites W2618532933 @default.
- W4245654360 cites W2622897137 @default.
- W4245654360 cites W2714226533 @default.
- W4245654360 cites W2734832579 @default.
- W4245654360 cites W2741178304 @default.
- W4245654360 cites W2754690845 @default.
- W4245654360 cites W2772152975 @default.
- W4245654360 cites W2787427645 @default.
- W4245654360 cites W2791658917 @default.
- W4245654360 cites W2792027821 @default.
- W4245654360 cites W2793481158 @default.
- W4245654360 cites W2803971470 @default.
- W4245654360 cites W2809844812 @default.
- W4245654360 cites W2884066976 @default.
- W4245654360 cites W2886208406 @default.
- W4245654360 cites W2891378911 @default.
- W4245654360 cites W2901669506 @default.
- W4245654360 cites W2914427568 @default.
- W4245654360 cites W2916226351 @default.
- W4245654360 cites W2929646074 @default.
- W4245654360 cites W2962687384 @default.
- W4245654360 cites W2963174577 @default.
- W4245654360 cites W2970963327 @default.
- W4245654360 cites W2979195253 @default.
- W4245654360 cites W2986572002 @default.
- W4245654360 cites W3004379845 @default.
- W4245654360 cites W3008852960 @default.
- W4245654360 cites W3017249133 @default.
- W4245654360 cites W3022045587 @default.
- W4245654360 cites W3027367435 @default.
- W4245654360 cites W3043900938 @default.
- W4245654360 cites W3080735827 @default.
- W4245654360 cites W3091839024 @default.
- W4245654360 cites W3092628849 @default.
- W4245654360 cites W3097031519 @default.
- W4245654360 cites W3100267010 @default.
- W4245654360 cites W3109226784 @default.
- W4245654360 cites W3111186353 @default.
- W4245654360 cites W3115101806 @default.
- W4245654360 cites W3117034696 @default.
- W4245654360 cites W3129234057 @default.
- W4245654360 cites W4255091397 @default.
- W4245654360 doi "https://doi.org/10.2196/preprints.29749" @default.
- W4245654360 hasPublicationYear "2021" @default.
- W4245654360 type Work @default.
- W4245654360 citedByCount "0" @default.
- W4245654360 crossrefType "posted-content" @default.
- W4245654360 hasAuthorship W4245654360A5001592898 @default.
- W4245654360 hasAuthorship W4245654360A5020810020 @default.
- W4245654360 hasAuthorship W4245654360A5055523664 @default.
- W4245654360 hasAuthorship W4245654360A5057926319 @default.
- W4245654360 hasAuthorship W4245654360A5077748404 @default.
- W4245654360 hasAuthorship W4245654360A5082044722 @default.
- W4245654360 hasConcept C109359841 @default.
- W4245654360 hasConcept C118552586 @default.
- W4245654360 hasConcept C119857082 @default.
- W4245654360 hasConcept C136764020 @default.
- W4245654360 hasConcept C139719470 @default.
- W4245654360 hasConcept C154945302 @default.
- W4245654360 hasConcept C15744967 @default.
- W4245654360 hasConcept C162324750 @default.
- W4245654360 hasConcept C169900460 @default.
- W4245654360 hasConcept C17744445 @default.
- W4245654360 hasConcept C199539241 @default.
- W4245654360 hasConcept C2776174506 @default.
- W4245654360 hasConcept C2776867660 @default.
- W4245654360 hasConcept C2777466982 @default.
- W4245654360 hasConcept C2779473830 @default.
- W4245654360 hasConcept C2780051608 @default.
- W4245654360 hasConcept C2908647359 @default.
- W4245654360 hasConcept C41008148 @default.
- W4245654360 hasConcept C43169469 @default.
- W4245654360 hasConcept C71924100 @default.
- W4245654360 hasConcept C77805123 @default.
- W4245654360 hasConcept C99454951 @default.
- W4245654360 hasConceptScore W4245654360C109359841 @default.
- W4245654360 hasConceptScore W4245654360C118552586 @default.
- W4245654360 hasConceptScore W4245654360C119857082 @default.
- W4245654360 hasConceptScore W4245654360C136764020 @default.
- W4245654360 hasConceptScore W4245654360C139719470 @default.
- W4245654360 hasConceptScore W4245654360C154945302 @default.