Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246134873> ?p ?o ?g. }
- W4246134873 endingPage "277" @default.
- W4246134873 startingPage "271" @default.
- W4246134873 abstract "Based on recent research in artificial neural networks, researchers have focused on topics from brain-like computing based on the Von Neumann architecture to brain-inspired computing based on the integration of storage and calculation due to the large energy dissipation. Inspired by biological neural networks, people use superconducting devices, which have nonlinear dynamic characteristics, to construct synapse and neuron circuits. However, it is challenging to build large-scale superconducting spiking neural networks due to fan-ins and fan-outs of superconducting devices. In this paper, we present a criterion to scale up the superconducting neural network. Then, we present a three-layer fully connected superconducting spiking neural network construction scheme. Inspired by the biological neural network, we present a new training method based on frequency coding. After only 100 training iterations with one grayscale image of a digit, the learned three-layer fully connected superconducting spiking neural network has a recognition accuracy rate of 86.1% on the digit class. Moreover, the power dissipation of one spiking event in a superconducting synapse is <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$23.2{boldsymbol{zJ}}$</tex-math></inline-formula> , which shows that the network has outstandingly high efficiency over existing biologically inspired neural networks." @default.
- W4246134873 created "2022-05-12" @default.
- W4246134873 creator A5015497946 @default.
- W4246134873 creator A5032622914 @default.
- W4246134873 creator A5050306282 @default.
- W4246134873 creator A5058381808 @default.
- W4246134873 creator A5063399497 @default.
- W4246134873 date "2023-02-01" @default.
- W4246134873 modified "2023-10-12" @default.
- W4246134873 title "Brain-Inspired Spiking Neural Network Using Superconducting Devices" @default.
- W4246134873 cites W1987860267 @default.
- W4246134873 cites W2005050960 @default.
- W4246134873 cites W2060482580 @default.
- W4246134873 cites W2084158904 @default.
- W4246134873 cites W2112796928 @default.
- W4246134873 cites W2138913040 @default.
- W4246134873 cites W2281072919 @default.
- W4246134873 cites W2331437931 @default.
- W4246134873 cites W2463288820 @default.
- W4246134873 cites W2513148968 @default.
- W4246134873 cites W2526646482 @default.
- W4246134873 cites W2566706182 @default.
- W4246134873 cites W2763791926 @default.
- W4246134873 cites W2782845760 @default.
- W4246134873 cites W2788701889 @default.
- W4246134873 cites W2791655443 @default.
- W4246134873 cites W2793979264 @default.
- W4246134873 cites W2807867922 @default.
- W4246134873 cites W2890653437 @default.
- W4246134873 cites W2894627692 @default.
- W4246134873 cites W2897291852 @default.
- W4246134873 cites W2900135600 @default.
- W4246134873 cites W2901407627 @default.
- W4246134873 cites W2908207594 @default.
- W4246134873 cites W2918636049 @default.
- W4246134873 cites W2952895520 @default.
- W4246134873 cites W2960894448 @default.
- W4246134873 cites W2963588827 @default.
- W4246134873 cites W2969621286 @default.
- W4246134873 cites W2991101131 @default.
- W4246134873 cites W3005577162 @default.
- W4246134873 cites W3102796826 @default.
- W4246134873 cites W3118619029 @default.
- W4246134873 cites W3120634080 @default.
- W4246134873 doi "https://doi.org/10.1109/tetci.2021.3089328" @default.
- W4246134873 hasPublicationYear "2023" @default.
- W4246134873 type Work @default.
- W4246134873 citedByCount "7" @default.
- W4246134873 countsByYear W42461348732021 @default.
- W4246134873 countsByYear W42461348732022 @default.
- W4246134873 countsByYear W42461348732023 @default.
- W4246134873 crossrefType "journal-article" @default.
- W4246134873 hasAuthorship W4246134873A5015497946 @default.
- W4246134873 hasAuthorship W4246134873A5032622914 @default.
- W4246134873 hasAuthorship W4246134873A5050306282 @default.
- W4246134873 hasAuthorship W4246134873A5058381808 @default.
- W4246134873 hasAuthorship W4246134873A5063399497 @default.
- W4246134873 hasConcept C111919701 @default.
- W4246134873 hasConcept C11731999 @default.
- W4246134873 hasConcept C118403218 @default.
- W4246134873 hasConcept C119599485 @default.
- W4246134873 hasConcept C119857082 @default.
- W4246134873 hasConcept C127413603 @default.
- W4246134873 hasConcept C154945302 @default.
- W4246134873 hasConcept C175202392 @default.
- W4246134873 hasConcept C177973122 @default.
- W4246134873 hasConcept C184720557 @default.
- W4246134873 hasConcept C33766855 @default.
- W4246134873 hasConcept C41008148 @default.
- W4246134873 hasConcept C50644808 @default.
- W4246134873 hasConcept C80469333 @default.
- W4246134873 hasConceptScore W4246134873C111919701 @default.
- W4246134873 hasConceptScore W4246134873C11731999 @default.
- W4246134873 hasConceptScore W4246134873C118403218 @default.
- W4246134873 hasConceptScore W4246134873C119599485 @default.
- W4246134873 hasConceptScore W4246134873C119857082 @default.
- W4246134873 hasConceptScore W4246134873C127413603 @default.
- W4246134873 hasConceptScore W4246134873C154945302 @default.
- W4246134873 hasConceptScore W4246134873C175202392 @default.
- W4246134873 hasConceptScore W4246134873C177973122 @default.
- W4246134873 hasConceptScore W4246134873C184720557 @default.
- W4246134873 hasConceptScore W4246134873C33766855 @default.
- W4246134873 hasConceptScore W4246134873C41008148 @default.
- W4246134873 hasConceptScore W4246134873C50644808 @default.
- W4246134873 hasConceptScore W4246134873C80469333 @default.
- W4246134873 hasFunder F4320321001 @default.
- W4246134873 hasFunder F4320321133 @default.
- W4246134873 hasIssue "1" @default.
- W4246134873 hasLocation W42461348731 @default.
- W4246134873 hasOpenAccess W4246134873 @default.
- W4246134873 hasPrimaryLocation W42461348731 @default.
- W4246134873 hasRelatedWork W1584270863 @default.
- W4246134873 hasRelatedWork W1595652908 @default.
- W4246134873 hasRelatedWork W180587397 @default.
- W4246134873 hasRelatedWork W1973323485 @default.
- W4246134873 hasRelatedWork W2149978162 @default.
- W4246134873 hasRelatedWork W2950022897 @default.
- W4246134873 hasRelatedWork W3109717595 @default.