Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246168651> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4246168651 abstract "<sec> <title>BACKGROUND</title> Postpartum hemorrhage remains one of the largest causes of maternal morbidity and mortality in the United States. </sec> <sec> <title>OBJECTIVE</title> To utilize machine learning techniques to identify patients at risk for postpartum hemorrhage at obstetric delivery. </sec> <sec> <title>METHODS</title> Women aged 18 to 55 delivering at a major academic center from July 2013 to October 2018 were included for analysis (n = 30,867). A total of 497 variables were collected from the electronic medical record including demographic information, obstetric, medical, surgical, and family history, vital signs, laboratory results, labor medication exposures, and delivery outcomes. Postpartum hemorrhage was defined as a blood loss of ≥ 1000 mL at the time of delivery, regardless of delivery method, with 2179 positive cases observed (7.06%). Supervised learning with regression-, tree-, and kernel-based machine learning methods was used to create classification models based upon training (n = 21,606) and validation (n = 4,630) cohorts. Models were tuned using feature selection algorithms and domain knowledge. An independent test cohort (n = 4,631) determined final performance by assessing for accuracy, area under the receiver operating curve (AUC), and sensitivity for proper classification of postpartum hemorrhage. Separate models were created using all collected data versus limited to data available prior to the second stage of labor/at the time of decision to proceed with cesarean delivery. Additional models examined patients by mode of delivery. </sec> <sec> <title>RESULTS</title> Gradient boosted decision trees achieved the best discrimination in the overall model. The model including all data mildly outperformed the second stage model (AUC 0.979, 95% CI 0.971-0.986 vs. AUC 0.955, 95% CI 0.939-0.970). Optimal model accuracy was 98.1% with a sensitivity of 0.763 for positive prediction of postpartum hemorrhage. The second stage model achieved an accuracy of 98.0% with a sensitivity of 0.737. Other selected algorithms returned models that performed with decreased discrimination. Models stratified by mode of delivery achieved good to excellent discrimination, but lacked sensitivity necessary for clinical applicability. </sec> <sec> <title>CONCLUSIONS</title> Machine learning methods can be used to identify women at risk for postpartum hemorrhage who may benefit from individualized preventative measures. Models limited to data available prior to delivery perform nearly as well as those with more complete datasets, supporting their potential utility in the clinical setting. Further work is necessary to create successful models based upon mode of delivery. An unbiased approach to hemorrhage risk prediction may be superior to human risk assessment and represents an area for future research. </sec>" @default.
- W4246168651 created "2022-05-12" @default.
- W4246168651 creator A5015803143 @default.
- W4246168651 creator A5052609428 @default.
- W4246168651 creator A5065792746 @default.
- W4246168651 creator A5076310503 @default.
- W4246168651 creator A5083411833 @default.
- W4246168651 creator A5090156231 @default.
- W4246168651 date "2021-10-06" @default.
- W4246168651 modified "2023-09-29" @default.
- W4246168651 title "Prediction of Maternal Hemorrhage: Using Machine Learning to Identify Patients at Risk (Preprint)" @default.
- W4246168651 cites W2009268789 @default.
- W4246168651 cites W2013681681 @default.
- W4246168651 cites W2031999046 @default.
- W4246168651 cites W2036954961 @default.
- W4246168651 cites W2044671379 @default.
- W4246168651 cites W2055379760 @default.
- W4246168651 cites W2066777231 @default.
- W4246168651 cites W2177870565 @default.
- W4246168651 cites W2330233604 @default.
- W4246168651 cites W2769328697 @default.
- W4246168651 cites W2910297942 @default.
- W4246168651 cites W3012155760 @default.
- W4246168651 doi "https://doi.org/10.2196/preprints.34108" @default.
- W4246168651 hasPublicationYear "2021" @default.
- W4246168651 type Work @default.
- W4246168651 citedByCount "0" @default.
- W4246168651 crossrefType "posted-content" @default.
- W4246168651 hasAuthorship W4246168651A5015803143 @default.
- W4246168651 hasAuthorship W4246168651A5052609428 @default.
- W4246168651 hasAuthorship W4246168651A5065792746 @default.
- W4246168651 hasAuthorship W4246168651A5076310503 @default.
- W4246168651 hasAuthorship W4246168651A5083411833 @default.
- W4246168651 hasAuthorship W4246168651A5090156231 @default.
- W4246168651 hasConcept C119857082 @default.
- W4246168651 hasConcept C126322002 @default.
- W4246168651 hasConcept C131872663 @default.
- W4246168651 hasConcept C136764020 @default.
- W4246168651 hasConcept C141071460 @default.
- W4246168651 hasConcept C154945302 @default.
- W4246168651 hasConcept C195910791 @default.
- W4246168651 hasConcept C41008148 @default.
- W4246168651 hasConcept C43169469 @default.
- W4246168651 hasConcept C58471807 @default.
- W4246168651 hasConcept C71924100 @default.
- W4246168651 hasConcept C84525736 @default.
- W4246168651 hasConceptScore W4246168651C119857082 @default.
- W4246168651 hasConceptScore W4246168651C126322002 @default.
- W4246168651 hasConceptScore W4246168651C131872663 @default.
- W4246168651 hasConceptScore W4246168651C136764020 @default.
- W4246168651 hasConceptScore W4246168651C141071460 @default.
- W4246168651 hasConceptScore W4246168651C154945302 @default.
- W4246168651 hasConceptScore W4246168651C195910791 @default.
- W4246168651 hasConceptScore W4246168651C41008148 @default.
- W4246168651 hasConceptScore W4246168651C43169469 @default.
- W4246168651 hasConceptScore W4246168651C58471807 @default.
- W4246168651 hasConceptScore W4246168651C71924100 @default.
- W4246168651 hasConceptScore W4246168651C84525736 @default.
- W4246168651 hasLocation W42461686511 @default.
- W4246168651 hasOpenAccess W4246168651 @default.
- W4246168651 hasPrimaryLocation W42461686511 @default.
- W4246168651 hasRelatedWork W1470425429 @default.
- W4246168651 hasRelatedWork W3200719183 @default.
- W4246168651 hasRelatedWork W3204641204 @default.
- W4246168651 hasRelatedWork W3210877509 @default.
- W4246168651 hasRelatedWork W4205958290 @default.
- W4246168651 hasRelatedWork W4249746146 @default.
- W4246168651 hasRelatedWork W4283016678 @default.
- W4246168651 hasRelatedWork W4306321456 @default.
- W4246168651 hasRelatedWork W4318350883 @default.
- W4246168651 hasRelatedWork W4328134586 @default.
- W4246168651 isParatext "false" @default.
- W4246168651 isRetracted "false" @default.
- W4246168651 workType "article" @default.