Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246216279> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4246216279 endingPage "208" @default.
- W4246216279 startingPage "199" @default.
- W4246216279 abstract "Free Access References Luigi Brochard, Luigi BrochardSearch for more papers by this authorVinod Kamath, Vinod KamathSearch for more papers by this authorJulita Corbalán, Julita CorbalánSearch for more papers by this authorScott Holland, Scott HollandSearch for more papers by this authorWalter Mittelbach, Walter MittelbachSearch for more papers by this authorMichael Ott, Michael OttSearch for more papers by this author Book Author(s):Luigi Brochard, Luigi BrochardSearch for more papers by this authorVinod Kamath, Vinod KamathSearch for more papers by this authorJulita Corbalán, Julita CorbalánSearch for more papers by this authorScott Holland, Scott HollandSearch for more papers by this authorWalter Mittelbach, Walter MittelbachSearch for more papers by this authorMichael Ott, Michael OttSearch for more papers by this author First published: 05 August 2019 https://doi.org/10.1002/9781119422037.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References 80 Plus (2011). Energy-efficient computers run with 80 PLUS. Brochure. Available at: https://www.plugloadsolutions.com/docs/broch/80PLUS_brochurepages.pdf [Accessed April 29, 2019]. Google Scholar ACPI (2014). Advanced Configuration and Power Interface [Online]. Available at: http://www.acpi.info [Accessed April 29, 2019]. Google Scholar Alibaba Group (2018). Immersion cooling for green computing. Presentation at OCP summit, March 20–21, 2018. Available at: https://www.opencompute.org/files/Immersion-Cooling-for-Green-Computing-V1.0.pdf [Accessed April 29, 2019]. Google Scholar Archer, D.W., Deverell, D.R., Fox, T.F., Gronowski, P.E., Jain, A.K., Leary, M., Miner, D.G., Olesin, A., Persels, S.D., Rubinfeld, P.I., Supnik R.M. (1987). A CMOS VAX microprocessor with on-chip cache and memory management. IEEE Journal of Solid-State Circuits, 22(5), 849– 852. CrossrefWeb of Science®Google Scholar ARM (n.d.). Arm Processors for the Widest Range of Devices—from Sensors to Servers [Online]. Available at: https://www.arm.com/products/silicon-ip-cpu [Accessed April 29, 2019]. Google Scholar Artman, P. (2018). The benefits of Lenovo thermal transfer module technology in ThinkSystem SD530 servers [Online]. Available at: https://lenovopress.com/lp0922.pdf [Accessed April 29, 2019]. Google Scholar ASHRAE TC 9.9 (2015). Data center storage equipment – Thermal guidelines, issues, and best practices. White paper. Available at: https://tc0909.ashraetcs.org/documents/ASHRAE_Storage_White_Paper_2015.pdf [Accessed April 29, 2019]. Google Scholar Aucun, B., Miller, P., Kale, L.V. (2016). Variation among processors under turbo boost in HPC systems. Working paper, University of Illinois at Urbana-Champaign. Available at: http://charm.cs.illinois.edu/newPapers/16-08/paper.pdf [Accessed April 29, 2019] CrossrefGoogle Scholar Auweter, A., Bode, A., Brehm, M., Brochard, L., Hammer, N., Huber, H., Panda, R., Thomas, F., Wilde, T. (2014). A case study of energy aware scheduling on SuperMUC. In Supercomputing: ISC 2014, J.M. Kunkel, T. Ludwig, H.W. Meuer (eds). Lecture Notes in Computer Science, Springer, Cham, 8488, 394– 409. Google Scholar Benini, L. (2018). Scaling performance in power limited HPC system. Presentation at the MAX Conference in Trieste, Italy, January 21. Available at: http://indico.ictp.it/event/8004/session/107/contribution/222 [Accessed April 29, 2019]. Google Scholar BLAS3Level Routines (2018). Developer Reference for Intel Math Kernel Library—Fortran [Online]. Available at: https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-3-routines. Google Scholar Blodgett, A.J., Barbour, D.R. (1982). Thermal conduction module: A high-performance multilayer ceramic package. IBM Journal of Research and Development, 26(1), 30– 36. CrossrefWeb of Science®Google Scholar Bonfa, P., Affinito, F., Cavazzoni C. (2018). Performance prediction for Quantum ESPRESSO on GPU accelerated systems. Presentation at the MAX Conference in Trieste, Italy, January 21, 2018. Available at: http://indico.ictp.it/event/8004/session/107/contribution/223 [Accessed April 29, 2019]. Google Scholar Boyer, E. (2017). TCO Model, 2017: Total cost of ownership and HPC system procurement SC17: Birds of feather. Presentation at SC17 in Denver, CO, November 14, 2017. Available at: https://eehpcwg.llnl.gov/assets/sc17_bof_tco_procurement.pdf. Google Scholar Brochard, L. (1989). Efficiency of some parallel numerical algorithms on distributed systems. Parallel Computing, 12(1), 21– 44. CrossrefWeb of Science®Google Scholar Brochard, L, Panda, R., Vemuganti, S. (2010). Optimizing performance and energy of HPC applications on POWER7. Computer Science – Research and Development, 25(3), 135– 140. CrossrefGoogle Scholar Brochard L., Panda R., DeSota D., Thomas F., Bell R. (2011). Power and energy-aware processor scheduling. ACM SIGSOFT Software Engineering Notes, 36(40). Google Scholar BSC (n.d.). Software & Apps: EAR: Energy management framework for HPC. Available at: https://www.bsc.es/research-and-development/software-and-apps/software-list/energy-aware-runtime-ear [Accessed April 30, 2019]. Google Scholar Coles, H., Herrlin, M. (2016). Immersion cooling of electronics in DoD installations. Lawrence Berkley National Laboratory report LBNL-1005666. Available at: https://datacenters.lbl.gov/sites/all/files/ImmersionCooling2016.pdf [Accessed April 30, 2019]. Google Scholar Corbalán, J., Brochard, L. (2019). EAR: Energy management framework for supercomputers. Working paper, Barcelona Supercomputing Center (BSC). Available at: https://www.bsc.es/sites/default/files/public/bscw2/content/software-app/technical-documentation/ear.pdf [Accessed April 30, 2019]. Google Scholar CEA (1996). Cray T90 [Online]. Available at: http://www-hpc.cea.fr/en/complexe/pages/15-crayT90.htm [Accessed April 30, 2019]. Google Scholar CGG (2012). Case Study: Cooling with oil. Available at: https://www.cgg.com/en/Sustainability/Case-Studies/Cooling-With-Oil [Accessed April 30, 2019]. Google Scholar Danilak, R. (2017). Why energy is a big and rapidly growing problem for data centers. Forbes Technology Council CommunityVoice, Dec 15, 2017. Available at: https://www.forbes.com/sites/forbestechcouncil/2017/12/15/why-energy-is-a-big-and-rapidly-growing-problem-for-data-centers/#6965d8615a30 [Accessed April 30, 2019]. Google Scholar Data Center Knowledge (2010). Largest data centers: i/o data centers, Microsoft. Available at: https://www.datacenterknowledge.com/special-report-the-worlds-largest-data-centers/largest-data-centers-io-data-centers-microsoft [Accessed April 30, 2019]. Google Scholar DCDB (n.d.). The DataCenter DataBase [Online]. Available at: http://dcdb.it [Accessed April 30, 2019]. Google Scholar Demetriou, D., Kamath, V., Mahaney, H. (2016). A holistic evaluation of data center water cooling total cost of ownership. ASME Journal of Electronic Packaging, 138(1), 11. CrossrefWeb of Science®Google Scholar Dennard, R. H., Gaensslen, F., Yu, H., Rideout, L., Bassous, E., LeBlanc, A. (1974). Design of ion-implanted MOSFET's with very small physical dimensions. IEEE Journal of Solid State Circuits, October, 256– 268. Google Scholar DMTF (n.d.). Redfish API [Online]. Available at: https://www.dmtf.org/standards/redfish [Accessed April 30, 2019]. Google Scholar Duan, C., Kee, R., Zhu, H., Sullivan, N., Zhu, L., Bian, L., Jennings, D., O'Hayre R. (2019). Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nature Energy, 4, 230– 240. CrossrefCASWeb of Science®Google Scholar Dykes, K., Hand, M., Stehly, T., Veers, P., Robinson, M., Lantz, E., Tusing, R. (2017). Enabling the SMART wind power plant of the future through science-based innovation. NREL Technical Report NREL/TP-5000-68123. Google Scholar Eastep, J., Sylvester, S., Cantalupo, C., Geltz, B., Ardanaz, F., Al-Rawi, A., Livingston, K., Keceli, F, Maiterth, M., Jana S. (2017). Global extensible open power manager: A vehicle for HPC community collaboration on co-designed energy management solutions. In High Performance Computing - 32nd International Conference, ISC High Performance 2017, 394– 412, Springer, Frankfurt, Germany. CrossrefGoogle Scholar Economou, D., Rivoire, S., Kozyrakis, C, Ranganathan, P. (2006). Full-system power analysis and modeling for server environments. In: Workshop on Modeling, Benchmarking and Simulation, MoBS 2006, 33rd Annual International Symposium on Computer Architecture. Available at: www-mount.ece.umn.edu/~jjyi/MoBS/2006/program/3A-Economou.pdf [Accessed May 7, 2019] Google Scholar Efi Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann E. (2011) Power management of the 2nd generation Intel core microarchitecture, formerly codenamed Sandy Bridge. Presentation at Hot Chips 2011, August. Available at: https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf [Accessed April 30, 2019]. Google Scholar Energy.gov (2018). Hydrogen production: Electrolysis [Online]. Available at: https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis [Accessed April 30, 2019]. Google Scholar Etinski, M., Corbalan, J., Labarta, J., Valero, M., Veidenbaum A. (2009). Power-aware load balancing of large scale MPI applications. In: 2009 IEEE International Symposium on Parallel & Distributed Processing, Rome, May 23– 29. Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5160973&isnumber=5160846 [Accessed May 1, 2019]. Google Scholar Eurostat (n.d.). Electricity price statistics [Online]. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics#Electricity_prices_for_non-household_consumers [Accessed April 26, 2019]. Google Scholar Ferro, M., Yokoyama, A., Kloh, V., Silva, G., Gandra, R., Braganc, R., Bulcao, A., Schulze, B. (2017). Analysis of GPU power consumption using internal sensors. In XXXVII Congresso da Sociedade Brasileira de Computação, 1698– 1711. Available at: http://csbc2017.mackenzie.br/public/files/16-wperformance/completos/7.pdf [Accessed April 30, 2019]. Google Scholar Fröhlich, D. Pantatosaki, E., Kolokathis, P.D., Markey, K, Reinsch, H., Baumgartner, M., ver der Veen, M.A., De Vos, D.E., Stock, N., Papdopoulos, G.K., Henninger, S.K., Janiak, C. (2016). Water adsorption behavior of CAU-10-H: a thorough investigation of its structure–property relationships. Journal of Material Chemistry A, 4(30), 11859– 11869. CrossrefWeb of Science®Google Scholar Gao, J. (2014). Machine learning applications for data center optimization. Working paper, Google. Available at: https://docs.google.com/a/google.com/viewer?url=www.google.com/about/datacenters/efficiency/internal/assets/machine-learning-applicationsfor-datacenter-optimization-finalv2.pdf [Accessed April 30, 2019]. Google Scholar GPU Database (n.d.). GPU Specs Database [Online]. TechPowerup . Available at: https://www.techpowerup.com/gpudb [Accessed April 30, 2019]. Google Scholar Gennady, F., Shaojuan Z. (2018). Math Kernel Library Benchmarks (Intel MKL Benchmarks). Intel Developer Done, updated May 29. Available at: https://software.intel.com/en-us/articles/intel-mkl-benchmarks-suite [Accessed April 30, 2019]. Google Scholar Google (n.d.). Data Centers [Online]. Available at: https://www.google.com/about/datacenters [Accessed April 30, 2019]. Google Scholar Grant, R.E., Levenhagen, M., Olivier, S.L., DeBonis, D., Pedretti, K.T., Laros, J.H. III (2016). Standardizing power monitoring and control at exascale. Computer, 49(10), 38– 46. CrossrefWeb of Science®Google Scholar Guardian, The (2017). Tsunami of data could consume one fifth of global electricity by 2025 [Online]. Available at: https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025 [Accessed April 29, 2019]. Google Scholar Haar, T.R., Nakamura, Y., Stuben, H. (2017). Berlin QCD user manual. Available at: https://www.rrz.uni-hamburg.de/services/hpc/bqcd/files/bqcd5-manual.pdf [Accessed April 30, 2019]. Google Scholar Hackenberg, D., Ilsche, T., Schuchart, J., Schöne, R., Nagel, W.E., Simon, M., Georgiou, Y. (2014). HDEEM: High definition energy efficiency monitoring. In: Energy Efficient Supercomputing Workshop (E2SC@SC 2014), 1– 10 Google Scholar Hootman, T., Okada, D., Pless, S., Sheppy, M., Torcellini, P. (2012). Net-zero blueprint. In: High Performing Buildings, ASHRAE, 20– 33. Available at: http://www.hpbmagazine.org/attachments/article/12170/12F-Department-of-Energys-National-Renewable-Energy-Laboratory-Research-Support-Facility-Golden-CO.pdf [Accessed April 30, 2019]. Google Scholar Hu, Z., Brooks, D., Zyuban, V., Bose P. (2003). Microarchitecture-level power-performance simulators: Modelling, validation, and impact on design. Tutorial, Harvard University. Available at: https://www.eecs.harvard.edu/~dbrooks/micro36_tutorial.htm [Accessed April 30, 2019]. Google Scholar IBM Icons (n.d.). Blue Gene [Online]. Available at: www-03.ibm.com/ibm/history/ibm100/us/en/icons/bluegene [Accessed April 29, 2019]. Google Scholar IBM Knowledge Center (n.d.) LoadLeveler V5.1 using and administering: Energy aware job support. Available at: https://www.ibm.com/support/knowledgecenter/SSFJTW_5.1.0/com.ibm.cluster.loadl.v5r1.load100.doc/am2xx_energyawarejobsupport.htm [Accessed April 30, 2019]. Google Scholar IBM Newsroom (2012). First commercial IBM hot-water cooled supercomputer to consume 40% less energy: Leibniz's “SuperMUC” named Europe's fastest supercomputer [Online]. Available at: https://www-03.ibm.com/press/us/en/pressrelease/38065.wss [Accessed April 30, 2019]. Google Scholar IBM Systems Reference Library (1974). IBM System/360 installation manual – physical planning [Online]. Available at: http://www.bitsavers.org/pdf/ibm/360/fe/GC22-6820-12_System_360_Installation_Manual_Physical_Planning.pdf [Accessed April 29, 2019]. Google Scholar Ilsche, T. (2016). Integrated performance and energy measurements. Tutorial presentation at the 45th SPEEDUP Workshop on High-Performance Computing, University of Basel, Switzerland, September 15–16. Available at: http://www.speedup.ch/workshops/w45_2016/presentations/Monitoring/06_Energy.pdf [Accessed April 30, 2019]. Google Scholar Indium Corporation (2008). Indium foil: A thermal interface material [Online]. Available at: https://www.indium.com/blog/indium-foil-a-thermal-interface-material.php [Accessed April 30, 2019]. Google Scholar Intel (2017). Intel 64 and IA 32 architectures performance monitoring events. Document number 335279-001, rev. 1.0, December. Available at: https://software.intel.com/sites/default/files/managed/8b/6e/335279_performance_monitoring_events_guide.pdf [Accessed April 30, 2019]. Google Scholar Intel (2012). Intel Xeon Processor E5-2600 product family uncore performance monitoring guide. Ref. no. 327043-001, March. Available at: https://www.intel.com/content/dam/www/public/us/en/documents/design-guides/xeon-e5-2600-uncore-guide.pdf [Accessed April 30, 2019]. Google Scholar Intel (2018). Intel Xeon Processor Scalable Family: Thermal mechanical specifications and design guide. Ref. no. 336064-003US, January. Available at: https://www.intel.com/content/dam/www/public/us/en/documents/guides/xeon-scalable-thermal-guide.pdf [Accessed April 29, 2019]. Google Scholar IPMI (2009). Using IPMItool to view system information. In: Sun Blade X6275 Server Mobile Diagnostics Guide, Chapter 7. Available at: https://docs.oracle.com/cd/E19464-01/820-6850-11/IPMItool.html#50602039_99299. Google Scholar Jones, N. (2018). How to stop data centres from gobbling up the world's electricity [Online]. Nature news feature (September 12). Available at: https://www.nature.com/articles/d41586-018-06610-y [Accessed April 29, 2019]. Google Scholar Jouppi, N.P. Young, C., Patil, N., Patterson, D. et al. (2017). In-datacenter performance analysis of a tensor processing unit. Google presentation at the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 26. Available at: https://arxiv.org/pdf/1704.04760 [Accessed April 30, 2019]. Google Scholar Kava, J. (2012). Cooling the cloud: A look inside Google's Hot Huts [Online]. Available at: https://green.googleblog.com/2012/10/cooling-cloud-look-inside-googles-hot.html [Accessed April 30, 2019]. Google Scholar Kava, J. (2018). Breaking ground for Google's first data center in Denmark [Online]. The Keyword, November 20. Available at: https://blog.google/inside-google/infrastructure/breaking-ground-googles-first-data-center-denmark [Accessed April 30, 2019]. Google Scholar Keyes, D., Gropp, W. (1986). A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation. Research report, Yale University, December 1985. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a165996.pdf [Accessed April 30, 2019]. Google Scholar LAPACK (n.d.). LAPACK: Linear Algebra PACKage 3.8.0, subroutine degemm(). Available at: http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60ae1.html [Accessed April 30, 2019]. Google Scholar Lenovo (n.d.). Lenovo ThinkSystem SD530 server (Xeon SP Gen 1) product guide [Online]. Available at: https://lenovopress.com/lp0635.pdf [Accessed April 30, 2019]. Google Scholar Libri, A., Bartolini, A., Beneventi, F., Borghesi, A., Benini, L. (2018). Out-of-band high resolution HPC power and performance monitoring for big-data analysis. Presentation at EETHPC Workshop, Frankfurt, Germany, June 28. Available at: http://eethpc.net/wp-content/uploads/2018/05/ISC2018_EETHPC_AL.pdf [Accessed April 30, 2019]. Google Scholar Lim, M.Y., Free, V.W., Lowenthal D.K. (2006). Adaptive, transparent frequency and voltage scaling of communication phases in MPI programs. In: SC ‘O6: Proceedings of the ACM/IEEE Conference on Supercomputing, Tampa, USA, Nov. 11– 17. Available at: https://ieeexplore.ieee.org/document/4090188 [Accessed April 30, 2019]. Google Scholar Marathe, A., Bailey, P.E., Lowenthal, D.K., Rountree, B., Schulz, M., de Supinski B.R. (2015). A run-time system for power-constrained HPC applications. In High Performance Computing. ISC High Performance 2015, J. Kunkel and T. Ludwig (eds). Lecture Notes in Computer Science, vol. 9137. Springer, Cham. Available at: https://e-reports-ext.llnl.gov/pdf/789054.pdf [Accessed April 29, 2019]. Google Scholar Marion, W., Urban, K. (1995). User's Manual for TMY2s Typical Meteorological Years. National Renewable Energy Laboratory, Golden, CO. CrossrefGoogle Scholar McAlpin, J.D. (2017). STREAM: Sustainable memory bandwidth in high performance computers. Website. Available at: https://www.cs.virginia.edu/stream/[Accessed April 30, 2019]. Google Scholar Mei, X., Wang, Q., Chu, X. (2016). A survey and measurement study of GPU DVFS on energy conservation. Digital Communications and Networks, 3, 89– 100. CrossrefWeb of Science®Google Scholar Meyer, N. (2016). Data centre infrastructure monitoring. Working paper, Partnership for Advanced Computing in Europe. Available at: http://www.prace-ri.eu/IMG/pdf/WP226.pdf [Accessed April 30, 2019]. Google Scholar Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114. Google Scholar Munroe M. (2016). How to reuse waste heat from data centers intelligently [Online]. Data Center Knowledge, May 10.Available at: https://www.datacenterknowledge.com/archives/2016/05/10/how-to-reuse-waste-heat-from-data-centers-intelligently [Accessed April 30, 2019]. Google Scholar Mutjaba H. (2018). AMD officially talks Zen 2 CPU architecture: Significant performance uplift with 2X throughput, doubled core density with up to 64 cores, PCIe Gen 4.0 support, aiming server EPYC Rome 7 nm CPUs first [Online]. Available at: https://wccftech.com/amd-zen-2-7nm-cpu-architecture-epyc-rome-and-ryzen-official [Accessed April 29, 2019]. Google Scholar NVIDIA (2015). Performance counters. In: NVIDIA Nsight visual studio edition 4.6 user guide [Online]. Available at: https://docs.nvidia.com/nsight-visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/KernelLevel/PerformanceCounters.htm [Accessed April 30, 2019]. Google Scholar NVIDIA (2017). NVIDIA Tesla V100 GPU architecture. White paper, WP-08608-001_v1.1, August. Available at: http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf. Google Scholar NVIDIA Developer (n.d.). CUDA Math library [Online]. Available at: https://developer.nvidia.com/cuda-math-library [Accessed April 30, 2019]. Google Scholar NVML (2019). NVML API reference guide [Online]. Available at: https://docs.nvidia.com/deploy/nvml-api/index.html [Accessed April 30, 2019]. Google Scholar NVSMI (n.d.). NVIDIA system management interface [Online]. Available at: https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf [Accessed April 30, 2019]. Google Scholar Official Data Foundation (2018). Prices for electricity 2000–2018 [Online]. Available at: http://www.in2013dollars.com/Electricity/price-inflation [Accessed April 26, 2019]. Google Scholar OLCF (n.d.). Summit user guide: system overview [Online]. Available at: https://www.olcf.ornl.gov/for-users/system-user-guides/summit/system-overview [Accessed April 30, 2019]. Google Scholar Park, C. (2012). Fundamentals of Engineering Financials, 3rd edition. Prentice Hall, New York. Google Scholar Patterson, M., Tschudi, B., Vangeet, O., Azevedo, D. (2010). ERE: a metric for measuring the benefit of reuse energy from a data center. White paper #29, The Green Grid. Available at: https://eehpcwg.llnl.gov/documents/infra/06_energyreuseefficiencymetric.pdf [Accessed April 30, 2019]. Google Scholar PBS Works (n.d.). Green computing [Online]. Available at: https://pbsprofessional.com.br/PBSSolution.aspx?v=1&i=6&n=Green-Computing [Accessed April 30, 2019]. Google Scholar PDP-11 (1975). PDP-11/70 maintenance and installation manual [Online]. Available at: http://bitsavers.informatik.uni-stuttgart.de/www.computer.museum.uq.edu.au/pdf/EK-11070-MM-002%20PDP11-70%20Maintenance%20And%20Installation%20Manual.pdf [Accessed April 29, 2019]. Google Scholar Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A. (2018). HPL – A portable implementation of high-performance Linpack for distributed memory computers, Version 2.2 [Online]. Available at: www.netlib.org/benchmark/hpl [Accessed April 30, 2019]. Google Scholar PRACE (n.d.). PRACE resources [Online]. Available at: http://www.prace-ri.eu/prace-resources [Accessed April 30, 2019]. Google Scholar Puzovic, M., Lee, E.K., Elisseev, V. (2018). A study on cross-architectural modelling of power consumption using neural networks. Supercomputing Frontiers and Innovations, 5(4), 24– 41. Google Scholar Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch, T. (2009). Adagio: Making DVS practical for complex HPC applications. In: Proceedings of the 23rd International Conference on Supercomputing (ICS'09). ACM, New York, USA, 460– 469. Google Scholar Sameh, S., DeSota, D., Panda, R., Stevens, S., Taylor, V, Wu, X. (2012) SWAPP: A framework for performance projections of HPC applications using benchmarks. In: Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops, 1722– 1731. Google Scholar Shenoy, N. (2018). Innovating for the “Data-Centric” era [Online]. Intel Newsroom, August 8, 2018. Available at: https://newsroom.intel.com/editorials/data-centric-innovation-summit [Accessed April 30, 2019]. Google Scholar Sheppy, M., Lobato, C., Van Geet, O., Pless, S., Donovan, K., Powers, C. (2011). Reducing data center loads for a large-scale, low-energy office buildings: NREL's research support facility. Report, NREL/BK-74A40-52785. Available at: https://www.nrel.gov/docs/fy12osti/52785.pdf [Accessed April 30, 2019]. Google Scholar Shoukourian, H., Wilde, T., Auweter, A., Bode, A. (2014). Monitoring power data: A first step towards a unified energy efficiency evaluation toolset for HPC data centers. Environmental Modelling & Software, 56, 13– 26. CrossrefWeb of Science®Google Scholar SLURM (2018). Power adaptive computing [Online]. Available at: https://slurm.schedmd.com/SLUG16/slug16_powercap.pdf [Accessed April 30, 2019]. Google Scholar Snavely, A., Wolter, N., Carrington L. (2013). Modeling application performance by convolving machine signatures with application profiles [Online]. Available at: https://pdfs.semanticscholar.org/61c6/afae262b0184c249da5f378a631b96f0a017.pdf [Accessed April 30, 2019]. Google Scholar SPEC (2006). Standard Performance Evaluation Corporation: SPEC CPU 2006 [Online]. Available at: https://www.spec.org/cpu2006 [Accessed April 30, 2019]. Google Scholar SPEC (2008). Standard Performance Evaluation Corporation: SPEC Power [Online]. Available at: https://www.spec.org/power_ssj2008 [Accessed April 30, 2019]. Google Scholar Terpstra, D., Jagode, H., You, H., Dongarra, J. (2010). Collecting performance data with PAPI-C. In: Tools for High Performance Computing 2009, Springer Berlin /Heidelberg, 3rd Parallel Tools Workshop, Dresden, Germany, 157– 173. CrossrefGoogle Scholar Todi, R., Gustafson, J., Prabhu, G. (1998). Application signature: An analytical technique to model system performance. Working paper. Available at: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4F0A64BD77510C6EB0A2BC0826742828?doi = 10.1.1.543.6234&rep = rep1&type = pdf [Accessed April 30, 2019]. Google Scholar Top500 Lists (n.d.). Available at: https://www.top500.org/lists/top500 [Accessed April 30, 2019]. Google Scholar Venkatesh, A., Vishnu, A., Hamidouche, K., Tallent, N., Panda, D., Kerbyson, D., Hoisie A. (2015). A case for application-oblivious energy-efficient MPI runtime. In: SC '15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, USA, November 15–20. Available at: https://ieeexplore.ieee.org/document/7832803 [Accessed April 30, 2019]. Google Scholar Vestas (n.d.). Company website. Available at: https://www.vestas.com [Accessed April 30, 2019]. Google Scholar WikiChip. (n.d.). Turbo Boost Technology (TBT) – Intel [Online]. Available at: https://en.wikichip.org/wiki/intel/turbo_boost_technology. Google Scholar Wikipedia (n.d.). Radeon [Online]. Available at: https://en.wikipedia.org/wiki/Radeon [Accessed April 29, 2019]. Google Scholar Wattuneed (n.d.). Size your solar kit [Online]. Available at: https://www.wattuneed.com/en/content/56-dimensionner-votre-kit-solaire-autonomes-autoconsommation [Accessed April 30, 2019]. Google Scholar Wittstadt, U., Füldner, G., Vasta, S., Volmer, R., Bendix, P., Schnabel, L., Mittelbach, W. (2017). Adsorption heat pumps and chillers: Recent developments for materials and components. In: 12th IEA Heat Pump Conference K.4.3.1. Available at: https://www.researchgate.net/publication/318653464_Adsorption_Heat_Pumps_and_Chillers_-_Recent_Developments_for_Materials_and_Components. Google Scholar Zao, L., Brouwer, J., James, S., Siegler, J., Peterson, E., Kansal, A., Liui, J. (2014). Servers powered by a 10 kW in-rack proton exchange membrane fuel cell system. Proceedings of the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL2014, June 30–July 2, 2014, Boston, MA. Google Scholar Energy-Efficient Computing and Data Centers ReferencesRelatedInformation" @default.
- W4246216279 created "2022-05-12" @default.
- W4246216279 date "2019-08-05" @default.
- W4246216279 modified "2023-10-12" @default.
- W4246216279 title "References" @default.
- W4246216279 cites W1591272405 @default.
- W4246216279 cites W1656664476 @default.
- W4246216279 cites W1973923004 @default.
- W4246216279 cites W1979229768 @default.
- W4246216279 cites W1995585559 @default.
- W4246216279 cites W2006648350 @default.
- W4246216279 cites W2008747215 @default.
- W4246216279 cites W2022292034 @default.
- W4246216279 cites W2083334646 @default.
- W4246216279 cites W2121899976 @default.
- W4246216279 cites W2152064396 @default.
- W4246216279 cites W2299190340 @default.
- W4246216279 cites W2417690246 @default.
- W4246216279 cites W2466286502 @default.
- W4246216279 cites W2527053550 @default.
- W4246216279 cites W2529165666 @default.
- W4246216279 cites W2532916439 @default.
- W4246216279 cites W2613546278 @default.
- W4246216279 cites W290717194 @default.
- W4246216279 cites W2922254025 @default.
- W4246216279 cites W4245046473 @default.
- W4246216279 doi "https://doi.org/10.1002/9781119422037.refs" @default.
- W4246216279 hasPublicationYear "2019" @default.
- W4246216279 type Work @default.
- W4246216279 citedByCount "0" @default.
- W4246216279 crossrefType "other" @default.
- W4246216279 hasBestOaLocation W42462162791 @default.
- W4246216279 hasConcept C41008148 @default.
- W4246216279 hasConceptScore W4246216279C41008148 @default.
- W4246216279 hasLocation W42462162791 @default.
- W4246216279 hasOpenAccess W4246216279 @default.
- W4246216279 hasPrimaryLocation W42462162791 @default.
- W4246216279 hasRelatedWork W1596801655 @default.
- W4246216279 hasRelatedWork W2130043461 @default.
- W4246216279 hasRelatedWork W2350741829 @default.
- W4246216279 hasRelatedWork W2358668433 @default.
- W4246216279 hasRelatedWork W2376932109 @default.
- W4246216279 hasRelatedWork W2382290278 @default.
- W4246216279 hasRelatedWork W2390279801 @default.
- W4246216279 hasRelatedWork W2748952813 @default.
- W4246216279 hasRelatedWork W2899084033 @default.
- W4246216279 hasRelatedWork W2530322880 @default.
- W4246216279 isParatext "false" @default.
- W4246216279 isRetracted "false" @default.
- W4246216279 workType "other" @default.