Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246420903> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4246420903 endingPage "718" @default.
- W4246420903 startingPage "685" @default.
- W4246420903 abstract "We first give general structural results for the twisted group algebras <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript asterisk Baseline left-parenthesis upper G comma sigma right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{C^{ast } }(G,sigma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a locally compact group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with large abelian subgroups. In particular, we use a theorem of Williams to realise <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript asterisk Baseline left-parenthesis upper G comma sigma right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{C^{ast }}(G,sigma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as the sections of a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript asterisk> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{C^{ast }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bundle whose fibres are twisted group algebras of smaller groups and then give criteria for the simplicity of these algebras. Next we use a device of Rosenberg to show that, when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Gamma> <mml:semantics> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:annotation encoding=application/x-tex>Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a discrete subgroup of a solvable Lie group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-groups <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K Subscript asterisk Baseline left-parenthesis upper C Superscript asterisk Baseline left-parenthesis normal upper Gamma comma sigma right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{K_ {ast } }({C^{ast } }(Gamma ,sigma ))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are isomorphic to certain twisted <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-groups <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K Superscript asterisk Baseline left-parenthesis upper G slash normal upper Gamma comma delta left-parenthesis sigma right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{K^{ast } }(G/Gamma ,delta (sigma ))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the homogeneous space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G slash normal upper Gamma> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>G/Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we discuss how the twisting class <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=delta left-parenthesis sigma right-parenthesis element-of upper H cubed left-parenthesis upper G slash normal upper Gamma comma double-struck upper Z right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo>,</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>delta (sigma ) in {H^3}(G/Gamma ,mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends on the cocycle <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=application/x-tex>sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For many particular groups, such as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Z Superscript n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathbb {Z}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or the integer Heisenberg group, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=delta left-parenthesis sigma right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>δ<!-- δ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>delta (sigma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> always vanishes, so that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K Subscript asterisk Baseline left-parenthesis upper C Superscript asterisk Baseline left-parenthesis normal upper Gamma comma sigma right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Γ<!-- Γ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>{K_ {ast } }({C^{ast } }(Gamma ,sigma ))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is independent of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding=application/x-tex>sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but a detailed analysis of examples of the form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Z Superscript n Baseline right-normal-factor-semidirect-product double-struck upper Z> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>⋊<!-- ⋊ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{mathbb {Z}^n} rtimes mathbb {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> shows this is not in general the case." @default.
- W4246420903 created "2022-05-12" @default.
- W4246420903 creator A5033543867 @default.
- W4246420903 creator A5069176042 @default.
- W4246420903 date "1992-01-01" @default.
- W4246420903 modified "2023-10-14" @default.
- W4246420903 title "On the structure of twisted group 𝐶*-algebras" @default.
- W4246420903 cites W1800006250 @default.
- W4246420903 cites W1966716144 @default.
- W4246420903 cites W1971019673 @default.
- W4246420903 cites W1976380759 @default.
- W4246420903 cites W1978199434 @default.
- W4246420903 cites W1979494073 @default.
- W4246420903 cites W1980365299 @default.
- W4246420903 cites W1997637884 @default.
- W4246420903 cites W2015755293 @default.
- W4246420903 cites W2017102291 @default.
- W4246420903 cites W2019603833 @default.
- W4246420903 cites W2023869612 @default.
- W4246420903 cites W2030206370 @default.
- W4246420903 cites W2044824231 @default.
- W4246420903 cites W2047328884 @default.
- W4246420903 cites W2051696925 @default.
- W4246420903 cites W2052031023 @default.
- W4246420903 cites W2058309006 @default.
- W4246420903 cites W2063707910 @default.
- W4246420903 cites W2069114256 @default.
- W4246420903 cites W2069820906 @default.
- W4246420903 cites W2073278170 @default.
- W4246420903 cites W2076536265 @default.
- W4246420903 cites W2082013295 @default.
- W4246420903 cites W2083309269 @default.
- W4246420903 cites W2153691855 @default.
- W4246420903 cites W2171397807 @default.
- W4246420903 cites W2321485685 @default.
- W4246420903 cites W2321967487 @default.
- W4246420903 cites W2435075874 @default.
- W4246420903 cites W2529978781 @default.
- W4246420903 cites W4229769975 @default.
- W4246420903 cites W4234772927 @default.
- W4246420903 cites W4237104231 @default.
- W4246420903 cites W4239539033 @default.
- W4246420903 cites W4249621005 @default.
- W4246420903 cites W4251524950 @default.
- W4246420903 cites W4252875121 @default.
- W4246420903 cites W4255128195 @default.
- W4246420903 cites W4301022050 @default.
- W4246420903 cites W648940929 @default.
- W4246420903 doi "https://doi.org/10.1090/s0002-9947-1992-1078249-7" @default.
- W4246420903 hasPublicationYear "1992" @default.
- W4246420903 type Work @default.
- W4246420903 citedByCount "1" @default.
- W4246420903 crossrefType "journal-article" @default.
- W4246420903 hasAuthorship W4246420903A5033543867 @default.
- W4246420903 hasAuthorship W4246420903A5069176042 @default.
- W4246420903 hasBestOaLocation W42464209031 @default.
- W4246420903 hasConcept C11413529 @default.
- W4246420903 hasConcept C154945302 @default.
- W4246420903 hasConcept C41008148 @default.
- W4246420903 hasConceptScore W4246420903C11413529 @default.
- W4246420903 hasConceptScore W4246420903C154945302 @default.
- W4246420903 hasConceptScore W4246420903C41008148 @default.
- W4246420903 hasIssue "2" @default.
- W4246420903 hasLocation W42464209031 @default.
- W4246420903 hasOpenAccess W4246420903 @default.
- W4246420903 hasPrimaryLocation W42464209031 @default.
- W4246420903 hasRelatedWork W2051487156 @default.
- W4246420903 hasRelatedWork W2351491280 @default.
- W4246420903 hasRelatedWork W2358668433 @default.
- W4246420903 hasRelatedWork W2371447506 @default.
- W4246420903 hasRelatedWork W2386767533 @default.
- W4246420903 hasRelatedWork W2390279801 @default.
- W4246420903 hasRelatedWork W2748952813 @default.
- W4246420903 hasRelatedWork W2899084033 @default.
- W4246420903 hasRelatedWork W303980170 @default.
- W4246420903 hasRelatedWork W3107474891 @default.
- W4246420903 hasVolume "334" @default.
- W4246420903 isParatext "false" @default.
- W4246420903 isRetracted "false" @default.
- W4246420903 workType "article" @default.