Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246455502> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4246455502 endingPage "1693" @default.
- W4246455502 startingPage "1689" @default.
- W4246455502 abstract "Nowadays users express their opinions on different websites like e-commerce and special review websites. Analyzing customers' opinions and their responses is important for decision making. So the researchers worked on analyzing these reviews automatically using a classical machine learning approach like Support Vector Machine (SVM) and various modern deep neural networks. For these networks, words are represented by using vectors called word embeddings. The required word embeddings are taken from pre-trained Word2Vec or learned from a corpus of the given main task. But, each method has its demerits. In the case of pre-trained word embeddings, embeddings are learned from large general corpus so these embeddings are not task specific. While in the case of learning words from the corpus of the main task, it does not reflect the true semantics. To deal with these problems, we have proposed an embedding developer model. This model develops task specific word embedding which also reflects true semantics. Task specific word embeddings are generated from the given corpus using the embedding layer in Keras. It builds the embeddings by considering relationships between words in the window. While true semantics are taken from Word2Vec embeddings. The proposed model combines these two embeddings to generate true semantics and task specific word embeddings. Result analysis shows that the proposed system works better on many benchmark dataset" @default.
- W4246455502 created "2022-05-12" @default.
- W4246455502 date "2020-05-30" @default.
- W4246455502 modified "2023-10-18" @default.
- W4246455502 title "Sentiment Analysis using Multiple Word Embedding for Words" @default.
- W4246455502 doi "https://doi.org/10.35940/ijrte.a2606.059120" @default.
- W4246455502 hasPublicationYear "2020" @default.
- W4246455502 type Work @default.
- W4246455502 citedByCount "0" @default.
- W4246455502 crossrefType "journal-article" @default.
- W4246455502 hasBestOaLocation W42464555021 @default.
- W4246455502 hasConcept C12267149 @default.
- W4246455502 hasConcept C130318100 @default.
- W4246455502 hasConcept C13280743 @default.
- W4246455502 hasConcept C138885662 @default.
- W4246455502 hasConcept C154945302 @default.
- W4246455502 hasConcept C162324750 @default.
- W4246455502 hasConcept C184337299 @default.
- W4246455502 hasConcept C185798385 @default.
- W4246455502 hasConcept C187736073 @default.
- W4246455502 hasConcept C199360897 @default.
- W4246455502 hasConcept C204321447 @default.
- W4246455502 hasConcept C205649164 @default.
- W4246455502 hasConcept C2776461190 @default.
- W4246455502 hasConcept C2777462759 @default.
- W4246455502 hasConcept C2778828372 @default.
- W4246455502 hasConcept C2780451532 @default.
- W4246455502 hasConcept C41008148 @default.
- W4246455502 hasConcept C41608201 @default.
- W4246455502 hasConcept C41895202 @default.
- W4246455502 hasConcept C50644808 @default.
- W4246455502 hasConcept C66402592 @default.
- W4246455502 hasConcept C90805587 @default.
- W4246455502 hasConceptScore W4246455502C12267149 @default.
- W4246455502 hasConceptScore W4246455502C130318100 @default.
- W4246455502 hasConceptScore W4246455502C13280743 @default.
- W4246455502 hasConceptScore W4246455502C138885662 @default.
- W4246455502 hasConceptScore W4246455502C154945302 @default.
- W4246455502 hasConceptScore W4246455502C162324750 @default.
- W4246455502 hasConceptScore W4246455502C184337299 @default.
- W4246455502 hasConceptScore W4246455502C185798385 @default.
- W4246455502 hasConceptScore W4246455502C187736073 @default.
- W4246455502 hasConceptScore W4246455502C199360897 @default.
- W4246455502 hasConceptScore W4246455502C204321447 @default.
- W4246455502 hasConceptScore W4246455502C205649164 @default.
- W4246455502 hasConceptScore W4246455502C2776461190 @default.
- W4246455502 hasConceptScore W4246455502C2777462759 @default.
- W4246455502 hasConceptScore W4246455502C2778828372 @default.
- W4246455502 hasConceptScore W4246455502C2780451532 @default.
- W4246455502 hasConceptScore W4246455502C41008148 @default.
- W4246455502 hasConceptScore W4246455502C41608201 @default.
- W4246455502 hasConceptScore W4246455502C41895202 @default.
- W4246455502 hasConceptScore W4246455502C50644808 @default.
- W4246455502 hasConceptScore W4246455502C66402592 @default.
- W4246455502 hasConceptScore W4246455502C90805587 @default.
- W4246455502 hasIssue "1" @default.
- W4246455502 hasLocation W42464555021 @default.
- W4246455502 hasOpenAccess W4246455502 @default.
- W4246455502 hasPrimaryLocation W42464555021 @default.
- W4246455502 hasRelatedWork W2289318896 @default.
- W4246455502 hasRelatedWork W2596026555 @default.
- W4246455502 hasRelatedWork W2620816324 @default.
- W4246455502 hasRelatedWork W2896498353 @default.
- W4246455502 hasRelatedWork W2961794095 @default.
- W4246455502 hasRelatedWork W2962901450 @default.
- W4246455502 hasRelatedWork W3046869600 @default.
- W4246455502 hasRelatedWork W3173577605 @default.
- W4246455502 hasRelatedWork W4246455502 @default.
- W4246455502 hasRelatedWork W4254304201 @default.
- W4246455502 hasVolume "9" @default.
- W4246455502 isParatext "false" @default.
- W4246455502 isRetracted "false" @default.
- W4246455502 workType "article" @default.