Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246531561> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4246531561 abstract "<p>Recent advances in deep learning techniques for object detection and the availability of high-resolution images facilitate the analysis of both temporal and spatial vegetation patterns in remote areas. High-resolution satellite imagery has been used successfully to detect trees in small areas with homogeneous rather than heterogeneous forests, in which single tree species have a strong contrast compared to their neighbors and landscape. However, no research to date has detected trees at the treeline in the remote and complex heterogeneous landscape of Greece using deep learning methods. We integrated high-resolution aerial images, climate data, and topographical characteristics to study the treeline dynamic over 70 years in the Samaria National Park on the Mediterranean island of Crete, Greece. We combined mapping techniques with deep learning approaches to detect and analyze spatio-temporal dynamics in treeline position and tree density. We use visual image interpretation to detect single trees on high-resolution aerial imagery from 1945, 2008, and 2015. Using the RGB aerial images from 2008 and 2015 we test a Convolution Neural Networks (CNN)-object detection approach (SSD) and a CNN-based segmentation technique (U-Net). Based on the mapping and deep learning approach, we have not detected a shift in treeline elevation over the last 70 years, despite warming, although tree density has increased. However, we show that CNN approach accurately detects and maps tree position and density at the treeline. We also reveal that the treeline elevation on Crete varies with topography. Treeline elevation decreases from the southern to the northern study sites. We explain these differences between study sites by the long-term interaction between topographical characteristics and meteorological factors. The study highlights the feasibility of using deep learning and high-resolution imagery as a promising technique for monitoring forests in remote areas.</p>" @default.
- W4246531561 created "2022-05-12" @default.
- W4246531561 creator A5001491754 @default.
- W4246531561 creator A5028818736 @default.
- W4246531561 creator A5050615763 @default.
- W4246531561 creator A5054949802 @default.
- W4246531561 creator A5056799239 @default.
- W4246531561 date "2021-03-04" @default.
- W4246531561 modified "2023-09-24" @default.
- W4246531561 title "Using high‐resolution aerial imagery and deep learning to detect tree spatio-temporal dynamics at the treeline" @default.
- W4246531561 doi "https://doi.org/10.5194/egusphere-egu21-14548" @default.
- W4246531561 hasPublicationYear "2021" @default.
- W4246531561 type Work @default.
- W4246531561 citedByCount "1" @default.
- W4246531561 countsByYear W42465315612023 @default.
- W4246531561 crossrefType "posted-content" @default.
- W4246531561 hasAuthorship W4246531561A5001491754 @default.
- W4246531561 hasAuthorship W4246531561A5028818736 @default.
- W4246531561 hasAuthorship W4246531561A5050615763 @default.
- W4246531561 hasAuthorship W4246531561A5054949802 @default.
- W4246531561 hasAuthorship W4246531561A5056799239 @default.
- W4246531561 hasConcept C100970517 @default.
- W4246531561 hasConcept C108583219 @default.
- W4246531561 hasConcept C113174947 @default.
- W4246531561 hasConcept C134306372 @default.
- W4246531561 hasConcept C142724271 @default.
- W4246531561 hasConcept C154945302 @default.
- W4246531561 hasConcept C203595873 @default.
- W4246531561 hasConcept C205649164 @default.
- W4246531561 hasConcept C2524010 @default.
- W4246531561 hasConcept C2776133958 @default.
- W4246531561 hasConcept C2778102629 @default.
- W4246531561 hasConcept C2987819851 @default.
- W4246531561 hasConcept C33923547 @default.
- W4246531561 hasConcept C37054046 @default.
- W4246531561 hasConcept C41008148 @default.
- W4246531561 hasConcept C58640448 @default.
- W4246531561 hasConcept C62649853 @default.
- W4246531561 hasConcept C71924100 @default.
- W4246531561 hasConcept C81363708 @default.
- W4246531561 hasConceptScore W4246531561C100970517 @default.
- W4246531561 hasConceptScore W4246531561C108583219 @default.
- W4246531561 hasConceptScore W4246531561C113174947 @default.
- W4246531561 hasConceptScore W4246531561C134306372 @default.
- W4246531561 hasConceptScore W4246531561C142724271 @default.
- W4246531561 hasConceptScore W4246531561C154945302 @default.
- W4246531561 hasConceptScore W4246531561C203595873 @default.
- W4246531561 hasConceptScore W4246531561C205649164 @default.
- W4246531561 hasConceptScore W4246531561C2524010 @default.
- W4246531561 hasConceptScore W4246531561C2776133958 @default.
- W4246531561 hasConceptScore W4246531561C2778102629 @default.
- W4246531561 hasConceptScore W4246531561C2987819851 @default.
- W4246531561 hasConceptScore W4246531561C33923547 @default.
- W4246531561 hasConceptScore W4246531561C37054046 @default.
- W4246531561 hasConceptScore W4246531561C41008148 @default.
- W4246531561 hasConceptScore W4246531561C58640448 @default.
- W4246531561 hasConceptScore W4246531561C62649853 @default.
- W4246531561 hasConceptScore W4246531561C71924100 @default.
- W4246531561 hasConceptScore W4246531561C81363708 @default.
- W4246531561 hasLocation W42465315611 @default.
- W4246531561 hasOpenAccess W4246531561 @default.
- W4246531561 hasPrimaryLocation W42465315611 @default.
- W4246531561 hasRelatedWork W117302946 @default.
- W4246531561 hasRelatedWork W2074095067 @default.
- W4246531561 hasRelatedWork W2081753809 @default.
- W4246531561 hasRelatedWork W2101051003 @default.
- W4246531561 hasRelatedWork W2116739313 @default.
- W4246531561 hasRelatedWork W2379062440 @default.
- W4246531561 hasRelatedWork W2384730432 @default.
- W4246531561 hasRelatedWork W2724909875 @default.
- W4246531561 hasRelatedWork W2774444957 @default.
- W4246531561 hasRelatedWork W2801659349 @default.
- W4246531561 isParatext "false" @default.
- W4246531561 isRetracted "false" @default.
- W4246531561 workType "article" @default.