Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246580413> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4246580413 abstract "The demands on the accuracy of force fields for classical molecular dynamics simulations are steadily growing as larger and more complex systems are studied over longer times. One way to meet these growing demands is to hand over the learning of force fields and their parameters to machines in a systematic (semi-)automatic man- ner. Doing so, we can take full advantage of exascale computing, the increasing availability of experimental data, and advances in quantum-mechanial computations and the calculation of experimental observables from molecular ensembles. Here, we discuss and illustrate the challenges we face in this endeavor and explore a way forward by adapting the Bayesian inference of ensembles (BioEn) method [Hummer and K ̈ofinger, J. Chem. Phys. (2015)] for force field parameterization. In the Bayesian inference of force fields (BioFF) method developed here, the optimization problem is regularized by a simplified prior on the force field parameters and an entropic prior act- ing on the ensemble. The latter compensates for the unavoidable over-simplifications in the parameter prior. We determine optimal force field parameters using an iterative predictor-corrector approach, in which we run simula- tions, determine the reference ensemble using the weighted histogram analysis method (WHAM), and optimize the BioFF posterior. We illustrate this approach for a simple polymer model, using the distance between two labeled sites as the experimental observable. By systematically resolving force field issues, the BioFF corrections extend to observables not included in ensemble reweighting. We envision future force field optimization as a formalized, systematic, and (semi-)automatic machine learning effort that incorporates a wide range of data from experiment and high-level quantum chemical calculations and takes advantage of exascale computing resources." @default.
- W4246580413 created "2022-05-12" @default.
- W4246580413 creator A5019134059 @default.
- W4246580413 creator A5089799904 @default.
- W4246580413 date "2021-07-29" @default.
- W4246580413 modified "2023-09-27" @default.
- W4246580413 title "Empirical optimization of molecular simulation force fields by Bayesian inference" @default.
- W4246580413 doi "https://doi.org/10.26434/chemrxiv-2021-tsbj3" @default.
- W4246580413 hasPublicationYear "2021" @default.
- W4246580413 type Work @default.
- W4246580413 citedByCount "0" @default.
- W4246580413 crossrefType "posted-content" @default.
- W4246580413 hasAuthorship W4246580413A5019134059 @default.
- W4246580413 hasAuthorship W4246580413A5089799904 @default.
- W4246580413 hasBestOaLocation W42465804131 @default.
- W4246580413 hasConcept C107673813 @default.
- W4246580413 hasConcept C10803110 @default.
- W4246580413 hasConcept C11413529 @default.
- W4246580413 hasConcept C119857082 @default.
- W4246580413 hasConcept C121332964 @default.
- W4246580413 hasConcept C121864883 @default.
- W4246580413 hasConcept C154945302 @default.
- W4246580413 hasConcept C160234255 @default.
- W4246580413 hasConcept C202444582 @default.
- W4246580413 hasConcept C2776214188 @default.
- W4246580413 hasConcept C2778049539 @default.
- W4246580413 hasConcept C2779377595 @default.
- W4246580413 hasConcept C32848918 @default.
- W4246580413 hasConcept C33923547 @default.
- W4246580413 hasConcept C41008148 @default.
- W4246580413 hasConcept C62520636 @default.
- W4246580413 hasConcept C9652623 @default.
- W4246580413 hasConceptScore W4246580413C107673813 @default.
- W4246580413 hasConceptScore W4246580413C10803110 @default.
- W4246580413 hasConceptScore W4246580413C11413529 @default.
- W4246580413 hasConceptScore W4246580413C119857082 @default.
- W4246580413 hasConceptScore W4246580413C121332964 @default.
- W4246580413 hasConceptScore W4246580413C121864883 @default.
- W4246580413 hasConceptScore W4246580413C154945302 @default.
- W4246580413 hasConceptScore W4246580413C160234255 @default.
- W4246580413 hasConceptScore W4246580413C202444582 @default.
- W4246580413 hasConceptScore W4246580413C2776214188 @default.
- W4246580413 hasConceptScore W4246580413C2778049539 @default.
- W4246580413 hasConceptScore W4246580413C2779377595 @default.
- W4246580413 hasConceptScore W4246580413C32848918 @default.
- W4246580413 hasConceptScore W4246580413C33923547 @default.
- W4246580413 hasConceptScore W4246580413C41008148 @default.
- W4246580413 hasConceptScore W4246580413C62520636 @default.
- W4246580413 hasConceptScore W4246580413C9652623 @default.
- W4246580413 hasFunder F4320322434 @default.
- W4246580413 hasLocation W42465804131 @default.
- W4246580413 hasLocation W42465804132 @default.
- W4246580413 hasOpenAccess W4246580413 @default.
- W4246580413 hasPrimaryLocation W42465804131 @default.
- W4246580413 hasRelatedWork W2511279186 @default.
- W4246580413 hasRelatedWork W2896567555 @default.
- W4246580413 hasRelatedWork W2963058055 @default.
- W4246580413 hasRelatedWork W3039945744 @default.
- W4246580413 hasRelatedWork W3135059516 @default.
- W4246580413 hasRelatedWork W4226337067 @default.
- W4246580413 hasRelatedWork W4230296741 @default.
- W4246580413 hasRelatedWork W4246035169 @default.
- W4246580413 hasRelatedWork W4246580413 @default.
- W4246580413 hasRelatedWork W4287744917 @default.
- W4246580413 isParatext "false" @default.
- W4246580413 isRetracted "false" @default.
- W4246580413 workType "article" @default.