Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246646871> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4246646871 abstract "<sec> <title>BACKGROUND</title> Behavioral therapies, such as electronic counseling and self-monitoring dispensed through mobile apps, have been shown to improve blood pressure, but the results vary and long-term engagement is a challenge. Machine learning is a rapidly advancing discipline that can be used to generate predictive and responsive models for the management and treatment of chronic conditions and shows potential for meaningfully improving outcomes. </sec> <sec> <title>OBJECTIVE</title> The objectives of this retrospective analysis were to examine the effect of a novel digital therapeutic on blood pressure in adults with hypertension and to explore the ability of machine learning to predict participant completion of the intervention. </sec> <sec> <title>METHODS</title> Participants with hypertension, who engaged with the digital intervention for at least 2 weeks and had paired blood pressure values, were identified from the intervention database. Participants were required to be ≥18 years old, reside in the United States, and own a smartphone. The digital intervention offers personalized behavior therapy, including goal setting, skill building, and self-monitoring. Participants reported blood pressure values at will, and changes were calculated using averages of baseline and final values for each participant. Machine learning was used to generate a model of participants who would complete the intervention. Random forest models were trained at days 1, 3, and 7 of the intervention, and the generalizability of the models was assessed using leave-one-out cross-validation. </sec> <sec> <title>RESULTS</title> The primary cohort comprised 172 participants with hypertension, having paired blood pressure values, who were engaged with the intervention. Of the total, 86.1% participants were women, the mean age was 55.0 years (95% CI 53.7-56.2), baseline systolic blood pressure was 138.9 mmHg (95% CI 136.6-141.3), and diastolic was 86.2 mmHg (95% CI 84.8-87.7). Mean change was –11.5 mmHg for systolic blood pressure and –5.9 mmHg for diastolic blood pressure over a mean of 62.6 days (P<.001). Among participants with stage 2 hypertension, mean change was –17.6 mmHg for systolic blood pressure and –8.8 mmHg for diastolic blood pressure. Changes in blood pressure remained significant in a mixed-effects model accounting for the baseline systolic blood pressure, age, gender, and body mass index (P<.001). A total of 43% of the participants tracking their blood pressure at 12 weeks achieved the 2017 American College of Cardiology/American Heart Association definition of blood pressure control. The 7-day predictive model for intervention completion was trained on 427 participants, and the area under the receiver operating characteristic curve was .78. </sec> <sec> <title>CONCLUSIONS</title> Reductions in blood pressure were observed in adults with hypertension who used the digital therapeutic. The degree of blood pressure reduction was clinically meaningful and achieved rapidly by a majority of the studied participants. Greater improvement was observed in participants with more severe hypertension at baseline. A successful proof of concept for using machine learning to predict intervention completion was presented. </sec>" @default.
- W4246646871 created "2022-05-12" @default.
- W4246646871 creator A5002798775 @default.
- W4246646871 creator A5008382169 @default.
- W4246646871 creator A5039991725 @default.
- W4246646871 creator A5040969717 @default.
- W4246646871 creator A5044945629 @default.
- W4246646871 creator A5046814641 @default.
- W4246646871 creator A5058888712 @default.
- W4246646871 creator A5064158397 @default.
- W4246646871 date "2018-12-06" @default.
- W4246646871 modified "2023-10-16" @default.
- W4246646871 title "Achieving Rapid Blood Pressure Control With Digital Therapeutics: Retrospective Cohort and Machine Learning Study (Preprint)" @default.
- W4246646871 cites W2069293725 @default.
- W4246646871 cites W2087655403 @default.
- W4246646871 cites W2089259727 @default.
- W4246646871 cites W2101965199 @default.
- W4246646871 cites W2754672704 @default.
- W4246646871 cites W2789104451 @default.
- W4246646871 cites W2796615944 @default.
- W4246646871 cites W2888589263 @default.
- W4246646871 cites W2890655815 @default.
- W4246646871 cites W2899852004 @default.
- W4246646871 cites W2900185248 @default.
- W4246646871 cites W2900314452 @default.
- W4246646871 doi "https://doi.org/10.2196/preprints.13030" @default.
- W4246646871 hasPublicationYear "2018" @default.
- W4246646871 type Work @default.
- W4246646871 citedByCount "1" @default.
- W4246646871 countsByYear W42466468712020 @default.
- W4246646871 crossrefType "posted-content" @default.
- W4246646871 hasAuthorship W4246646871A5002798775 @default.
- W4246646871 hasAuthorship W4246646871A5008382169 @default.
- W4246646871 hasAuthorship W4246646871A5039991725 @default.
- W4246646871 hasAuthorship W4246646871A5040969717 @default.
- W4246646871 hasAuthorship W4246646871A5044945629 @default.
- W4246646871 hasAuthorship W4246646871A5046814641 @default.
- W4246646871 hasAuthorship W4246646871A5058888712 @default.
- W4246646871 hasAuthorship W4246646871A5064158397 @default.
- W4246646871 hasBestOaLocation W42466468712 @default.
- W4246646871 hasConcept C119857082 @default.
- W4246646871 hasConcept C126322002 @default.
- W4246646871 hasConcept C138496976 @default.
- W4246646871 hasConcept C154945302 @default.
- W4246646871 hasConcept C15744967 @default.
- W4246646871 hasConcept C159110408 @default.
- W4246646871 hasConcept C167135981 @default.
- W4246646871 hasConcept C169258074 @default.
- W4246646871 hasConcept C1862650 @default.
- W4246646871 hasConcept C27158222 @default.
- W4246646871 hasConcept C27415008 @default.
- W4246646871 hasConcept C2780665704 @default.
- W4246646871 hasConcept C41008148 @default.
- W4246646871 hasConcept C71924100 @default.
- W4246646871 hasConcept C72563966 @default.
- W4246646871 hasConcept C84393581 @default.
- W4246646871 hasConceptScore W4246646871C119857082 @default.
- W4246646871 hasConceptScore W4246646871C126322002 @default.
- W4246646871 hasConceptScore W4246646871C138496976 @default.
- W4246646871 hasConceptScore W4246646871C154945302 @default.
- W4246646871 hasConceptScore W4246646871C15744967 @default.
- W4246646871 hasConceptScore W4246646871C159110408 @default.
- W4246646871 hasConceptScore W4246646871C167135981 @default.
- W4246646871 hasConceptScore W4246646871C169258074 @default.
- W4246646871 hasConceptScore W4246646871C1862650 @default.
- W4246646871 hasConceptScore W4246646871C27158222 @default.
- W4246646871 hasConceptScore W4246646871C27415008 @default.
- W4246646871 hasConceptScore W4246646871C2780665704 @default.
- W4246646871 hasConceptScore W4246646871C41008148 @default.
- W4246646871 hasConceptScore W4246646871C71924100 @default.
- W4246646871 hasConceptScore W4246646871C72563966 @default.
- W4246646871 hasConceptScore W4246646871C84393581 @default.
- W4246646871 hasLocation W42466468711 @default.
- W4246646871 hasLocation W42466468712 @default.
- W4246646871 hasOpenAccess W4246646871 @default.
- W4246646871 hasPrimaryLocation W42466468711 @default.
- W4246646871 hasRelatedWork W1578080237 @default.
- W4246646871 hasRelatedWork W2039957658 @default.
- W4246646871 hasRelatedWork W2094267668 @default.
- W4246646871 hasRelatedWork W2119954546 @default.
- W4246646871 hasRelatedWork W2126258538 @default.
- W4246646871 hasRelatedWork W2132956356 @default.
- W4246646871 hasRelatedWork W2141061362 @default.
- W4246646871 hasRelatedWork W2144043977 @default.
- W4246646871 hasRelatedWork W2320335107 @default.
- W4246646871 hasRelatedWork W3164046577 @default.
- W4246646871 isParatext "false" @default.
- W4246646871 isRetracted "false" @default.
- W4246646871 workType "article" @default.