Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246805110> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4246805110 abstract "Abstract. Water temperature in rivers is a crucial environmental factor with the ability to alter hydro-ecological as well as socio-economic conditions within a catchment. The development of modelling concepts for predicting river water temperature is and will be essential for an effective integrated water management and the development of adaptation strategies to future global changes (e.g. climate change). This study tests the performance of 6 different machine learning models: step-wise linear regression, Random forest, eXtreme Gradient Boosting (XGBoost), Feedforward neural networks (FNN), and two types of Recurrent neural networks (RNN). All models are applied using different data inputs for daily water temperature prediction in 10 Austrian catchments ranging from 200 km2 to 96000 km2 and exhibiting a wide range of physiographic characteristics. The evaluated input data sets include combinations of daily means of air temperature, runoff, precipitation and global radiation. Bayesian optimization is applied to optimize the hyperparameters of all applied machine learning models. To make the results comparable to previous studies, two widely used benchmark models are applied additionally: linear regression and air2stream. With a mean root mean squared error (RMSE) of 0.55 °C the tested models could significantly improve water temperature prediction compared to linear regression (1.55 °C) and air2stream (0.98 °C). In general, the results show a very similar performance of the tested machine learning models, with a median RMSE difference of 0.08 °C between the models. From the 6 tested machine learning models both FNNs and XGBoost performed best in 4 of the 10 catchments. RNNs are the best performing models in the largest catchment, indicating that RNNs are mainly performing well when processes with long-term dependencies are important. Furthermore, a wide range of performance was observed for different hyperparameter sets for the tested models, showing the importance of hyperprameter optimization. Especially the FNN model results showed an extremely large RMSE standard deviation of 1.60 °C due to the chosen hyperparamerters. This study evaluates different sets of input variables, machine learning models and training characteristics for daily stream water temperature prediction, acting as a basis for future development of regional multi-catchment water temperature prediction models. All preprocessing steps and models are implemented into the open source R package wateRtemp, to provide easy access to these modelling approaches and facilitate further research." @default.
- W4246805110 created "2022-05-12" @default.
- W4246805110 creator A5021787984 @default.
- W4246805110 creator A5055886117 @default.
- W4246805110 creator A5077334637 @default.
- W4246805110 creator A5082330588 @default.
- W4246805110 date "2021-01-14" @default.
- W4246805110 modified "2023-10-10" @default.
- W4246805110 title "Machine learning methods for stream water temperature prediction" @default.
- W4246805110 doi "https://doi.org/10.5194/hess-2020-670" @default.
- W4246805110 hasPublicationYear "2021" @default.
- W4246805110 type Work @default.
- W4246805110 citedByCount "4" @default.
- W4246805110 countsByYear W42468051102021 @default.
- W4246805110 countsByYear W42468051102022 @default.
- W4246805110 countsByYear W42468051102023 @default.
- W4246805110 crossrefType "posted-content" @default.
- W4246805110 hasAuthorship W4246805110A5021787984 @default.
- W4246805110 hasAuthorship W4246805110A5055886117 @default.
- W4246805110 hasAuthorship W4246805110A5077334637 @default.
- W4246805110 hasAuthorship W4246805110A5082330588 @default.
- W4246805110 hasBestOaLocation W42468051101 @default.
- W4246805110 hasConcept C105795698 @default.
- W4246805110 hasConcept C119857082 @default.
- W4246805110 hasConcept C139945424 @default.
- W4246805110 hasConcept C154945302 @default.
- W4246805110 hasConcept C169258074 @default.
- W4246805110 hasConcept C33923547 @default.
- W4246805110 hasConcept C41008148 @default.
- W4246805110 hasConcept C48921125 @default.
- W4246805110 hasConcept C50644808 @default.
- W4246805110 hasConcept C70153297 @default.
- W4246805110 hasConcept C83546350 @default.
- W4246805110 hasConcept C84525736 @default.
- W4246805110 hasConcept C8642999 @default.
- W4246805110 hasConceptScore W4246805110C105795698 @default.
- W4246805110 hasConceptScore W4246805110C119857082 @default.
- W4246805110 hasConceptScore W4246805110C139945424 @default.
- W4246805110 hasConceptScore W4246805110C154945302 @default.
- W4246805110 hasConceptScore W4246805110C169258074 @default.
- W4246805110 hasConceptScore W4246805110C33923547 @default.
- W4246805110 hasConceptScore W4246805110C41008148 @default.
- W4246805110 hasConceptScore W4246805110C48921125 @default.
- W4246805110 hasConceptScore W4246805110C50644808 @default.
- W4246805110 hasConceptScore W4246805110C70153297 @default.
- W4246805110 hasConceptScore W4246805110C83546350 @default.
- W4246805110 hasConceptScore W4246805110C84525736 @default.
- W4246805110 hasConceptScore W4246805110C8642999 @default.
- W4246805110 hasFunder F4320321004 @default.
- W4246805110 hasFunder F4320321181 @default.
- W4246805110 hasLocation W42468051101 @default.
- W4246805110 hasLocation W42468051102 @default.
- W4246805110 hasOpenAccess W4246805110 @default.
- W4246805110 hasPrimaryLocation W42468051101 @default.
- W4246805110 hasRelatedWork W1509177177 @default.
- W4246805110 hasRelatedWork W3208169454 @default.
- W4246805110 hasRelatedWork W4225647658 @default.
- W4246805110 hasRelatedWork W4315777889 @default.
- W4246805110 hasRelatedWork W4317732970 @default.
- W4246805110 hasRelatedWork W4322710485 @default.
- W4246805110 hasRelatedWork W4323294312 @default.
- W4246805110 hasRelatedWork W4366990902 @default.
- W4246805110 hasRelatedWork W4386295066 @default.
- W4246805110 hasRelatedWork W4386690025 @default.
- W4246805110 isParatext "false" @default.
- W4246805110 isRetracted "false" @default.
- W4246805110 workType "article" @default.