Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246880022> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4246880022 abstract "We present the first application of machine learning on per- and polyfluoroalkyl substances (PFAS) for predicting and rationalizing carbon-fluorine (C–F) bond dissociation energies to aid in their efficient treatment and removal. Using a variety of machine learning algorithms (including Random Forest, Least Absolute Shrinkage and Selection Operator Regression, and Feed-forward Neural Networks), we were able to obtain extremely accurate predictions for C–F bond dissociation energies (with deviations less than 0.70 kcal/mol) that are <i>within chemical accuracy</i> of the PFAS reference data. In addition, we show that our machine learning approach is extremely efficient (requiring less than 10 minutes to train the data and less than a second to predict the C–F bond dissociation energy of a new compound) and only needs knowledge of the simple chemical connectivity in a PFAS structure to yield reliable results – without recourse to a computationally expensive quantum mechanical calculation or a three-dimensional structure. Finally, we present an unsupervised machine learning algorithm that can automatically classify and rationalize chemical trends in PFAS structures that would otherwise have been difficult to humanly visualize/process manually. Collectively, these studies (1) comprise the first application of machine learning techniques for PFAS structures to predict/rationalize C–F bond dissociation energies and (2) show immense promise for assisting experimentalists in the <i>targeted</i> defluorination of specific bonds in PFAS structures (or other unknown environmental contaminants) of increasing complexity." @default.
- W4246880022 created "2022-05-12" @default.
- W4246880022 creator A5001327313 @default.
- W4246880022 creator A5022569738 @default.
- W4246880022 creator A5055977368 @default.
- W4246880022 creator A5056561771 @default.
- W4246880022 creator A5065894155 @default.
- W4246880022 creator A5085237782 @default.
- W4246880022 date "2019-09-03" @default.
- W4246880022 modified "2023-10-16" @default.
- W4246880022 title "A Machine Learning Approach for Predicting Defluorination of Per- and Polyfluoroalkyl Substances (PFAS) for Their Efficient Treatment and Removal" @default.
- W4246880022 doi "https://doi.org/10.26434/chemrxiv.9756557" @default.
- W4246880022 hasPublicationYear "2019" @default.
- W4246880022 type Work @default.
- W4246880022 citedByCount "0" @default.
- W4246880022 crossrefType "posted-content" @default.
- W4246880022 hasAuthorship W4246880022A5001327313 @default.
- W4246880022 hasAuthorship W4246880022A5022569738 @default.
- W4246880022 hasAuthorship W4246880022A5055977368 @default.
- W4246880022 hasAuthorship W4246880022A5056561771 @default.
- W4246880022 hasAuthorship W4246880022A5065894155 @default.
- W4246880022 hasAuthorship W4246880022A5085237782 @default.
- W4246880022 hasBestOaLocation W42468800221 @default.
- W4246880022 hasConcept C102931765 @default.
- W4246880022 hasConcept C11413529 @default.
- W4246880022 hasConcept C119857082 @default.
- W4246880022 hasConcept C147597530 @default.
- W4246880022 hasConcept C154945302 @default.
- W4246880022 hasConcept C178790620 @default.
- W4246880022 hasConcept C185592680 @default.
- W4246880022 hasConcept C2991951333 @default.
- W4246880022 hasConcept C32909587 @default.
- W4246880022 hasConcept C41008148 @default.
- W4246880022 hasConcept C50644808 @default.
- W4246880022 hasConcept C62396407 @default.
- W4246880022 hasConceptScore W4246880022C102931765 @default.
- W4246880022 hasConceptScore W4246880022C11413529 @default.
- W4246880022 hasConceptScore W4246880022C119857082 @default.
- W4246880022 hasConceptScore W4246880022C147597530 @default.
- W4246880022 hasConceptScore W4246880022C154945302 @default.
- W4246880022 hasConceptScore W4246880022C178790620 @default.
- W4246880022 hasConceptScore W4246880022C185592680 @default.
- W4246880022 hasConceptScore W4246880022C2991951333 @default.
- W4246880022 hasConceptScore W4246880022C32909587 @default.
- W4246880022 hasConceptScore W4246880022C41008148 @default.
- W4246880022 hasConceptScore W4246880022C50644808 @default.
- W4246880022 hasConceptScore W4246880022C62396407 @default.
- W4246880022 hasLocation W42468800221 @default.
- W4246880022 hasOpenAccess W4246880022 @default.
- W4246880022 hasPrimaryLocation W42468800221 @default.
- W4246880022 hasRelatedWork W1407330 @default.
- W4246880022 hasRelatedWork W2433769 @default.
- W4246880022 hasRelatedWork W3102522 @default.
- W4246880022 hasRelatedWork W3540334 @default.
- W4246880022 hasRelatedWork W378023 @default.
- W4246880022 hasRelatedWork W52377 @default.
- W4246880022 hasRelatedWork W8067959 @default.
- W4246880022 hasRelatedWork W8242173 @default.
- W4246880022 hasRelatedWork W9711757 @default.
- W4246880022 hasRelatedWork W9770290 @default.
- W4246880022 isParatext "false" @default.
- W4246880022 isRetracted "false" @default.
- W4246880022 workType "article" @default.