Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246901651> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4246901651 abstract "Antibodies are proteins generated by the adaptive immune system to recognize and counteract a plethora of pathogens through specific binding. This adaptive binding is mediated by structural diversity in the six complementary determining region (CDR) loops (H1, H2, H3, L1, L2 and L3), which also makes accurate structural modeling of CDRs challenging. Both homology and de novo modeling approaches have been used; to date, the former has achieved greater accuracy for the non-H3 loops. The better performance of homology modeling in non-H3 CDRs is due to the fact that most of the non-H3 CDR loops of the same length and type can be grouped into a few structural clusters. Most antibody-modeling suites utilize homology modeling for the non-H3 CDRs, differing only in the alignment algorithm and how/if they utilize structural clusters. While RosettaAntibody and SAbPred do not explicitly assign query CDR sequences to clusters, two other approaches, PIGS and Kotai Antibody Builder, utilize sequence-based rules to assign CDR sequences to clusters. While the manually curated sequence rules can identify better structural templates, because their curation requires extensive literature search and human effort, they lag behind the deposition of new antibody structures and are infrequently updated. In this study, we propose a machine learning approach (Gradient Boosting Machine [GBM]) to learn the structural clusters of non-H3 CDRs from sequence alone. We argue the GBM method gives simplicity in feature selection and immediate integration of new data compared to manual sequence rules curation. We compare the classification results using the GBM method to that of RosettaAntibody in a 3-repeat 10-fold cross-validation scheme on the cluster-annotated antibody database PyIgClassify and we observe an improvement in the classification accuracy from 78.8±0.2% to 85.1±0.2%. We find the GBM models can reduce the errors in specific cluster membership misclassifications if the involved clusters have relatively abundant data. Based on the factors identified, we suggest methods that can enrich structural classes with sparse data can possibly further improve prediction accuracy in future studies." @default.
- W4246901651 created "2022-05-12" @default.
- W4246901651 creator A5009383312 @default.
- W4246901651 creator A5067826490 @default.
- W4246901651 creator A5072654634 @default.
- W4246901651 date "2018-06-20" @default.
- W4246901651 modified "2023-09-28" @default.
- W4246901651 title "Non-H3 CDR template selection in antibody modeling through machine learning" @default.
- W4246901651 doi "https://doi.org/10.7287/peerj.preprints.26996" @default.
- W4246901651 hasPublicationYear "2018" @default.
- W4246901651 type Work @default.
- W4246901651 citedByCount "0" @default.
- W4246901651 crossrefType "posted-content" @default.
- W4246901651 hasAuthorship W4246901651A5009383312 @default.
- W4246901651 hasAuthorship W4246901651A5067826490 @default.
- W4246901651 hasAuthorship W4246901651A5072654634 @default.
- W4246901651 hasBestOaLocation W42469016511 @default.
- W4246901651 hasConcept C104317684 @default.
- W4246901651 hasConcept C154945302 @default.
- W4246901651 hasConcept C167625842 @default.
- W4246901651 hasConcept C169627665 @default.
- W4246901651 hasConcept C181199279 @default.
- W4246901651 hasConcept C199360897 @default.
- W4246901651 hasConcept C41008148 @default.
- W4246901651 hasConcept C45484198 @default.
- W4246901651 hasConcept C54355233 @default.
- W4246901651 hasConcept C55493867 @default.
- W4246901651 hasConcept C70721500 @default.
- W4246901651 hasConcept C82714645 @default.
- W4246901651 hasConcept C86803240 @default.
- W4246901651 hasConceptScore W4246901651C104317684 @default.
- W4246901651 hasConceptScore W4246901651C154945302 @default.
- W4246901651 hasConceptScore W4246901651C167625842 @default.
- W4246901651 hasConceptScore W4246901651C169627665 @default.
- W4246901651 hasConceptScore W4246901651C181199279 @default.
- W4246901651 hasConceptScore W4246901651C199360897 @default.
- W4246901651 hasConceptScore W4246901651C41008148 @default.
- W4246901651 hasConceptScore W4246901651C45484198 @default.
- W4246901651 hasConceptScore W4246901651C54355233 @default.
- W4246901651 hasConceptScore W4246901651C55493867 @default.
- W4246901651 hasConceptScore W4246901651C70721500 @default.
- W4246901651 hasConceptScore W4246901651C82714645 @default.
- W4246901651 hasConceptScore W4246901651C86803240 @default.
- W4246901651 hasLocation W42469016511 @default.
- W4246901651 hasLocation W42469016512 @default.
- W4246901651 hasOpenAccess W4246901651 @default.
- W4246901651 hasPrimaryLocation W42469016511 @default.
- W4246901651 hasRelatedWork W1976234760 @default.
- W4246901651 hasRelatedWork W1984291348 @default.
- W4246901651 hasRelatedWork W2019715509 @default.
- W4246901651 hasRelatedWork W2056619794 @default.
- W4246901651 hasRelatedWork W2083394907 @default.
- W4246901651 hasRelatedWork W2110145561 @default.
- W4246901651 hasRelatedWork W2139373949 @default.
- W4246901651 hasRelatedWork W2171771275 @default.
- W4246901651 hasRelatedWork W3139700547 @default.
- W4246901651 hasRelatedWork W4360763556 @default.
- W4246901651 isParatext "false" @default.
- W4246901651 isRetracted "false" @default.
- W4246901651 workType "article" @default.