Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246917893> ?p ?o ?g. }
- W4246917893 endingPage "1837" @default.
- W4246917893 startingPage "1824" @default.
- W4246917893 abstract "A healthy liver leads to healthy life. In India, as well as in other parts of the world, liver disease is one of the principle areas of concern in medicine. For this study, diagnosis of liver disease is performed by deploying classification methods include linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), feed-forward neural network (FFNN) and support vector machine (SVM) based approaches. Experimental results concluded that SVM based approaches outperformed all other classification methods in terms of diagnostic accuracy rates. Furthermore, least squares support vector machine (LSSVM) with gaussian radial basis kernel function based machine learning approach had emerged as the as the best predictive model by reducing inefficiencies caused by false diagnosis. LSSVM also performed better than linear SVM, polynomial SVM, quadratic SVM and multilayer perceptron SVM despite the uneven variance in attribute values in the health examination data." @default.
- W4246917893 created "2022-05-12" @default.
- W4246917893 creator A5073215738 @default.
- W4246917893 creator A5084993727 @default.
- W4246917893 date "2018-01-01" @default.
- W4246917893 modified "2023-09-23" @default.
- W4246917893 title "Diagnosis of Liver Disease by Using Least Squares Support Vector Machine Approach" @default.
- W4246917893 cites W1596717185 @default.
- W4246917893 cites W1605915846 @default.
- W4246917893 cites W1968680127 @default.
- W4246917893 cites W1971524939 @default.
- W4246917893 cites W1979886491 @default.
- W4246917893 cites W1990592622 @default.
- W4246917893 cites W1996681631 @default.
- W4246917893 cites W1999194769 @default.
- W4246917893 cites W2004288989 @default.
- W4246917893 cites W2005569959 @default.
- W4246917893 cites W2010347842 @default.
- W4246917893 cites W2012718379 @default.
- W4246917893 cites W2017869354 @default.
- W4246917893 cites W2020207580 @default.
- W4246917893 cites W2023304033 @default.
- W4246917893 cites W2035222751 @default.
- W4246917893 cites W2036209982 @default.
- W4246917893 cites W2037627487 @default.
- W4246917893 cites W2044398512 @default.
- W4246917893 cites W2050302867 @default.
- W4246917893 cites W2055524828 @default.
- W4246917893 cites W2073413951 @default.
- W4246917893 cites W2076925151 @default.
- W4246917893 cites W2076961193 @default.
- W4246917893 cites W2079818888 @default.
- W4246917893 cites W2083514549 @default.
- W4246917893 cites W2088821791 @default.
- W4246917893 cites W2090584429 @default.
- W4246917893 cites W2124744273 @default.
- W4246917893 cites W2124886884 @default.
- W4246917893 cites W2133506114 @default.
- W4246917893 cites W2142523881 @default.
- W4246917893 cites W2155423555 @default.
- W4246917893 cites W2161403678 @default.
- W4246917893 cites W2168994750 @default.
- W4246917893 cites W2171347282 @default.
- W4246917893 cites W2534387825 @default.
- W4246917893 cites W2538659323 @default.
- W4246917893 cites W4239510810 @default.
- W4246917893 doi "https://doi.org/10.4018/978-1-5225-5643-5.ch081" @default.
- W4246917893 hasPublicationYear "2018" @default.
- W4246917893 type Work @default.
- W4246917893 citedByCount "0" @default.
- W4246917893 crossrefType "book-chapter" @default.
- W4246917893 hasAuthorship W4246917893A5073215738 @default.
- W4246917893 hasAuthorship W4246917893A5084993727 @default.
- W4246917893 hasConcept C114614502 @default.
- W4246917893 hasConcept C119857082 @default.
- W4246917893 hasConcept C121332964 @default.
- W4246917893 hasConcept C122280245 @default.
- W4246917893 hasConcept C12267149 @default.
- W4246917893 hasConcept C129844170 @default.
- W4246917893 hasConcept C145828037 @default.
- W4246917893 hasConcept C153180895 @default.
- W4246917893 hasConcept C154945302 @default.
- W4246917893 hasConcept C163716315 @default.
- W4246917893 hasConcept C166437778 @default.
- W4246917893 hasConcept C179717631 @default.
- W4246917893 hasConcept C181367576 @default.
- W4246917893 hasConcept C2524010 @default.
- W4246917893 hasConcept C33923547 @default.
- W4246917893 hasConcept C41008148 @default.
- W4246917893 hasConcept C50644808 @default.
- W4246917893 hasConcept C52620605 @default.
- W4246917893 hasConcept C62520636 @default.
- W4246917893 hasConcept C69738355 @default.
- W4246917893 hasConcept C7218915 @default.
- W4246917893 hasConcept C74193536 @default.
- W4246917893 hasConcept C98856871 @default.
- W4246917893 hasConceptScore W4246917893C114614502 @default.
- W4246917893 hasConceptScore W4246917893C119857082 @default.
- W4246917893 hasConceptScore W4246917893C121332964 @default.
- W4246917893 hasConceptScore W4246917893C122280245 @default.
- W4246917893 hasConceptScore W4246917893C12267149 @default.
- W4246917893 hasConceptScore W4246917893C129844170 @default.
- W4246917893 hasConceptScore W4246917893C145828037 @default.
- W4246917893 hasConceptScore W4246917893C153180895 @default.
- W4246917893 hasConceptScore W4246917893C154945302 @default.
- W4246917893 hasConceptScore W4246917893C163716315 @default.
- W4246917893 hasConceptScore W4246917893C166437778 @default.
- W4246917893 hasConceptScore W4246917893C179717631 @default.
- W4246917893 hasConceptScore W4246917893C181367576 @default.
- W4246917893 hasConceptScore W4246917893C2524010 @default.
- W4246917893 hasConceptScore W4246917893C33923547 @default.
- W4246917893 hasConceptScore W4246917893C41008148 @default.
- W4246917893 hasConceptScore W4246917893C50644808 @default.
- W4246917893 hasConceptScore W4246917893C52620605 @default.
- W4246917893 hasConceptScore W4246917893C62520636 @default.
- W4246917893 hasConceptScore W4246917893C69738355 @default.
- W4246917893 hasConceptScore W4246917893C7218915 @default.
- W4246917893 hasConceptScore W4246917893C74193536 @default.