Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246954543> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4246954543 endingPage "743" @default.
- W4246954543 startingPage "736" @default.
- W4246954543 abstract "The core idea behind deep learning is that comprehensive feature representations can be efficiently learned with the deep architectures which are collected of stacked layer of trainable non linear operation. However, because of the diversity of image content, it is hard to learn effective feature representations directly from images for steGAnalysis. SteGAnalysis may be generally figured as binary classification issue. This technique, which is called a universal/blind steGAnalysis, will become the principle stream around current steGAnalytic algorithms. In the preparation phase, effective features which are sensitive with message embedding are concentrated on highlight possibility control by steGAnographier. Then, a binary classifier will be discovered looking into pairs from claiming blanket pictures and their relating stegos pointing with Figure a limit on recognize steGAnography. On testing phase, those prepared classifier is used to anticipate labels from claiming new enter pictures. Past exploration indicated that it will be rather critical to power spread Characteristics Also stego offers to be paired, i. e. SteGAnalytic offers from claiming spread pictures And their stego pictures ought further bolstering be safeguarded in the preparing situated. Otherwise, breaking cover-stego pairs in distinctive sets might present biased error and prompt to a suboptimal execution. Proposed approaches have to fix the kernel of first layer as the HPF (high-pass filter). It is so-called pre-processing layer. We suggested another technic with characteristic decrease done which characteristic Choice and extraction And classifier preparation need aid performed at the same time utilizing a generic calculation. That generic calculation optimizes An characteristic weight vector used to scale the individual features in the unique example vectors. A masker vector may be likewise utilized to concurrent Choice of a characteristic subset. We utilize this technobabble clinched alongside mix with those RESNET, and look at the outcomes with established characteristic Choice and extraction systems." @default.
- W4246954543 created "2022-05-12" @default.
- W4246954543 creator A5040956513 @default.
- W4246954543 creator A5063006188 @default.
- W4246954543 date "2019-07-30" @default.
- W4246954543 modified "2023-10-14" @default.
- W4246954543 title "736 Published By: Blue Eyes Intelligence Engineering & Sciences Publication Retrieval Number: B1780078219/19©BEIESP DOI: 10.35940/ijrte.B1780.078219 Journal Website: www.ijrte.org A Meta Classification Model for Stegoanalysis using Generic NN" @default.
- W4246954543 doi "https://doi.org/10.35940/ijrte.b1780.078219" @default.
- W4246954543 hasPublicationYear "2019" @default.
- W4246954543 type Work @default.
- W4246954543 citedByCount "0" @default.
- W4246954543 crossrefType "journal-article" @default.
- W4246954543 hasAuthorship W4246954543A5040956513 @default.
- W4246954543 hasAuthorship W4246954543A5063006188 @default.
- W4246954543 hasBestOaLocation W42469545431 @default.
- W4246954543 hasConcept C107368093 @default.
- W4246954543 hasConcept C108801101 @default.
- W4246954543 hasConcept C119857082 @default.
- W4246954543 hasConcept C12267149 @default.
- W4246954543 hasConcept C153180895 @default.
- W4246954543 hasConcept C154945302 @default.
- W4246954543 hasConcept C33923547 @default.
- W4246954543 hasConcept C41008148 @default.
- W4246954543 hasConcept C41608201 @default.
- W4246954543 hasConcept C48372109 @default.
- W4246954543 hasConcept C94375191 @default.
- W4246954543 hasConcept C95623464 @default.
- W4246954543 hasConceptScore W4246954543C107368093 @default.
- W4246954543 hasConceptScore W4246954543C108801101 @default.
- W4246954543 hasConceptScore W4246954543C119857082 @default.
- W4246954543 hasConceptScore W4246954543C12267149 @default.
- W4246954543 hasConceptScore W4246954543C153180895 @default.
- W4246954543 hasConceptScore W4246954543C154945302 @default.
- W4246954543 hasConceptScore W4246954543C33923547 @default.
- W4246954543 hasConceptScore W4246954543C41008148 @default.
- W4246954543 hasConceptScore W4246954543C41608201 @default.
- W4246954543 hasConceptScore W4246954543C48372109 @default.
- W4246954543 hasConceptScore W4246954543C94375191 @default.
- W4246954543 hasConceptScore W4246954543C95623464 @default.
- W4246954543 hasIssue "2" @default.
- W4246954543 hasLocation W42469545431 @default.
- W4246954543 hasOpenAccess W4246954543 @default.
- W4246954543 hasPrimaryLocation W42469545431 @default.
- W4246954543 hasRelatedWork W1576926746 @default.
- W4246954543 hasRelatedWork W2041636156 @default.
- W4246954543 hasRelatedWork W2120008580 @default.
- W4246954543 hasRelatedWork W2125958657 @default.
- W4246954543 hasRelatedWork W2141999940 @default.
- W4246954543 hasRelatedWork W2160451891 @default.
- W4246954543 hasRelatedWork W2364921047 @default.
- W4246954543 hasRelatedWork W2380734674 @default.
- W4246954543 hasRelatedWork W2976929342 @default.
- W4246954543 hasRelatedWork W4242764575 @default.
- W4246954543 hasVolume "8" @default.
- W4246954543 isParatext "false" @default.
- W4246954543 isRetracted "false" @default.
- W4246954543 workType "article" @default.