Matches in SemOpenAlex for { <https://semopenalex.org/work/W4246988493> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4246988493 abstract "Abstract In this study, 03 ensemble and decomposition methods (DMs) i.e., empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and improved complete ensemble empirical mode decomposition with additive noise (ICEEMDAN) were coupled artificial intelligence and machine learning based method AI-ML, i.e., multilayer perceptron (MLP), support vector regression (SVR) to develop 06 fundamental hybrid models to predict streamflow with one-month lead time. Developed models in this study were categorized into runoff models (RMs) and rainfall-runoff models (RRMs). Results indicated that (i) among standalone models (SMs), support vector regression (SVR) performs better than multilayer perceptron (MLP), (ii) decomposition methods (DMs) have ability to improve the accuracy rate of the standalone models (SMs) and, (iii) rainfall runoff models (RRMs) have shown great accuracy throughout the investigation as compared to runoff models (RMs). To compare model performances flow-hydrographs (FHG) were generated, 05 performance evaluation criteria (PEC) were used to quantify the model precision. Two step verification method i.e., extreme value analysis (EVA) and least value analysis (LVA) approaches were proposed to verify the performances. Among all developed hybrid models (HMs), i.e., EMD- (MLP, SVR), EEMD- (MLP, SVR) and ICEEMDAN- (MLP, SVR), rainfall-runoff ICEEMDAN-(SVR) model was selected as optimal model with MAE (59.56), RMSE (91.82), R (0.97) MAPE (8.75), and NSEC (0.97) for Mangla watershed, Pakistan." @default.
- W4246988493 created "2022-05-12" @default.
- W4246988493 creator A5003051268 @default.
- W4246988493 creator A5018963043 @default.
- W4246988493 creator A5029485586 @default.
- W4246988493 creator A5033374699 @default.
- W4246988493 creator A5033865889 @default.
- W4246988493 creator A5034915402 @default.
- W4246988493 date "2021-10-21" @default.
- W4246988493 modified "2023-09-23" @default.
- W4246988493 title "Optimum Application of Hybrid Data Driven Models With Two Step Verification Method at Mangla Watershed, Pakistan" @default.
- W4246988493 doi "https://doi.org/10.21203/rs.3.rs-989802/v1" @default.
- W4246988493 hasPublicationYear "2021" @default.
- W4246988493 type Work @default.
- W4246988493 citedByCount "0" @default.
- W4246988493 crossrefType "posted-content" @default.
- W4246988493 hasAuthorship W4246988493A5003051268 @default.
- W4246988493 hasAuthorship W4246988493A5018963043 @default.
- W4246988493 hasAuthorship W4246988493A5029485586 @default.
- W4246988493 hasAuthorship W4246988493A5033374699 @default.
- W4246988493 hasAuthorship W4246988493A5033865889 @default.
- W4246988493 hasAuthorship W4246988493A5034915402 @default.
- W4246988493 hasBestOaLocation W42469884931 @default.
- W4246988493 hasConcept C105795698 @default.
- W4246988493 hasConcept C112633086 @default.
- W4246988493 hasConcept C11413529 @default.
- W4246988493 hasConcept C119857082 @default.
- W4246988493 hasConcept C12267149 @default.
- W4246988493 hasConcept C124101348 @default.
- W4246988493 hasConcept C154945302 @default.
- W4246988493 hasConcept C179717631 @default.
- W4246988493 hasConcept C25570617 @default.
- W4246988493 hasConcept C33923547 @default.
- W4246988493 hasConcept C41008148 @default.
- W4246988493 hasConcept C50644808 @default.
- W4246988493 hasConcept C60908668 @default.
- W4246988493 hasConceptScore W4246988493C105795698 @default.
- W4246988493 hasConceptScore W4246988493C112633086 @default.
- W4246988493 hasConceptScore W4246988493C11413529 @default.
- W4246988493 hasConceptScore W4246988493C119857082 @default.
- W4246988493 hasConceptScore W4246988493C12267149 @default.
- W4246988493 hasConceptScore W4246988493C124101348 @default.
- W4246988493 hasConceptScore W4246988493C154945302 @default.
- W4246988493 hasConceptScore W4246988493C179717631 @default.
- W4246988493 hasConceptScore W4246988493C25570617 @default.
- W4246988493 hasConceptScore W4246988493C33923547 @default.
- W4246988493 hasConceptScore W4246988493C41008148 @default.
- W4246988493 hasConceptScore W4246988493C50644808 @default.
- W4246988493 hasConceptScore W4246988493C60908668 @default.
- W4246988493 hasLocation W42469884931 @default.
- W4246988493 hasOpenAccess W4246988493 @default.
- W4246988493 hasPrimaryLocation W42469884931 @default.
- W4246988493 hasRelatedWork W10786582 @default.
- W4246988493 hasRelatedWork W11883665 @default.
- W4246988493 hasRelatedWork W13034104 @default.
- W4246988493 hasRelatedWork W6310906 @default.
- W4246988493 hasRelatedWork W6552940 @default.
- W4246988493 hasRelatedWork W728297 @default.
- W4246988493 hasRelatedWork W7283634 @default.
- W4246988493 hasRelatedWork W5323488 @default.
- W4246988493 hasRelatedWork W7759631 @default.
- W4246988493 hasRelatedWork W8458896 @default.
- W4246988493 isParatext "false" @default.
- W4246988493 isRetracted "false" @default.
- W4246988493 workType "article" @default.