Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247151509> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4247151509 abstract "Abstract Background: An enzyme activity is influenced by the external environment condition. It is important to have an enzyme remain high activity in a specific condition. A usual way is to first determine the optimal condition of an enzyme by either the gradient test or by tertiary structure, and then to use protein engineering to mutate a wild type enzyme for a higher activity in an expected condition. Results: In this paper, we investigate the optimal condition of an enzyme by directly analyzing the sequence. We propose an embedding method to represent the amino acids and the construct information as vectors in the latent space. These vectors contain information about the correlations between amino acids and sites in the aligned amino acid sequences, as well as the correlations with the optimal conditions. We crawled and processed the amino acid sequence in glycoside hydrolase GH11 family, and got 125 amino acid sequences with optimal pH condition. We used probabilistic approximation method to implement the embedding learning method on these samples. Based on these embedding vectors, we design a computational score to determine the optimal condition for an enzyme and achieves the accuracy 80% on the test proteins in the same family. We also give the mutation suggestion such that it has a higher activity in the expected environment, which is consistent with the professional wet experiments and analysis. Conclusion: A new computational method is proposed for the sequence based enzyme optimal condition analysis. Compared with the traditional process that involves a lot of wet experiments and requires multiple mutations, this method can get the desired protein for an expected condition in an efficient and effective way. Keywords: Protein sequence analysis; Embedding; Bioinformatics" @default.
- W4247151509 created "2022-05-12" @default.
- W4247151509 creator A5008664030 @default.
- W4247151509 creator A5015215095 @default.
- W4247151509 creator A5028382404 @default.
- W4247151509 creator A5076623319 @default.
- W4247151509 creator A5084888271 @default.
- W4247151509 date "2019-11-04" @default.
- W4247151509 modified "2023-09-27" @default.
- W4247151509 title "A Sequence Embedding Method For Enzyme Optimal Condition Analysis" @default.
- W4247151509 doi "https://doi.org/10.21203/rs.2.16793/v1" @default.
- W4247151509 hasPublicationYear "2019" @default.
- W4247151509 type Work @default.
- W4247151509 citedByCount "0" @default.
- W4247151509 crossrefType "posted-content" @default.
- W4247151509 hasAuthorship W4247151509A5008664030 @default.
- W4247151509 hasAuthorship W4247151509A5015215095 @default.
- W4247151509 hasAuthorship W4247151509A5028382404 @default.
- W4247151509 hasAuthorship W4247151509A5076623319 @default.
- W4247151509 hasAuthorship W4247151509A5084888271 @default.
- W4247151509 hasBestOaLocation W42471515091 @default.
- W4247151509 hasConcept C11413529 @default.
- W4247151509 hasConcept C126255220 @default.
- W4247151509 hasConcept C154945302 @default.
- W4247151509 hasConcept C181199279 @default.
- W4247151509 hasConcept C185592680 @default.
- W4247151509 hasConcept C196032511 @default.
- W4247151509 hasConcept C2778112365 @default.
- W4247151509 hasConcept C33923547 @default.
- W4247151509 hasConcept C41008148 @default.
- W4247151509 hasConcept C41608201 @default.
- W4247151509 hasConcept C49937458 @default.
- W4247151509 hasConcept C515207424 @default.
- W4247151509 hasConcept C55493867 @default.
- W4247151509 hasConceptScore W4247151509C11413529 @default.
- W4247151509 hasConceptScore W4247151509C126255220 @default.
- W4247151509 hasConceptScore W4247151509C154945302 @default.
- W4247151509 hasConceptScore W4247151509C181199279 @default.
- W4247151509 hasConceptScore W4247151509C185592680 @default.
- W4247151509 hasConceptScore W4247151509C196032511 @default.
- W4247151509 hasConceptScore W4247151509C2778112365 @default.
- W4247151509 hasConceptScore W4247151509C33923547 @default.
- W4247151509 hasConceptScore W4247151509C41008148 @default.
- W4247151509 hasConceptScore W4247151509C41608201 @default.
- W4247151509 hasConceptScore W4247151509C49937458 @default.
- W4247151509 hasConceptScore W4247151509C515207424 @default.
- W4247151509 hasConceptScore W4247151509C55493867 @default.
- W4247151509 hasLocation W42471515091 @default.
- W4247151509 hasOpenAccess W4247151509 @default.
- W4247151509 hasPrimaryLocation W42471515091 @default.
- W4247151509 hasRelatedWork W2010356817 @default.
- W4247151509 hasRelatedWork W2021873084 @default.
- W4247151509 hasRelatedWork W2070126222 @default.
- W4247151509 hasRelatedWork W2355609426 @default.
- W4247151509 hasRelatedWork W2389722447 @default.
- W4247151509 hasRelatedWork W2748952813 @default.
- W4247151509 hasRelatedWork W2897327298 @default.
- W4247151509 hasRelatedWork W2963414055 @default.
- W4247151509 hasRelatedWork W3122393451 @default.
- W4247151509 hasRelatedWork W4230423303 @default.
- W4247151509 isParatext "false" @default.
- W4247151509 isRetracted "false" @default.
- W4247151509 workType "article" @default.