Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247190615> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4247190615 endingPage "281" @default.
- W4247190615 startingPage "277" @default.
- W4247190615 abstract "Free Access References Jorge Ancheyta, Jorge Ancheyta Instituto Mexicano del Petróleo, Mexico City, MexicoSearch for more papers by this author Book Author(s):Jorge Ancheyta, Jorge Ancheyta Instituto Mexicano del Petróleo, Mexico City, MexicoSearch for more papers by this author First published: 09 June 2017 https://doi.org/10.1002/9781119226666.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Ancheyta, J., Angeles, M.J., Macías, M.J., Marroquín, G., Morales, R. 2002. Changes in apparent reaction order and activation energy in the hydrodesulfurization of real feedstocks. Energy Fuels. 16: 189– 193. Ancheyta, J., López, F., Aguilar, E. 1999. 5-Lump kinetic model for gas oil catalytic cracking. Appl. Cat. A. 177: 227– 235. Ancheyta, J., López, F., Aguilar, E., Moreno, J.C. 1997. A strategy for kinetic parameter estimation in the fluid catalytic cracking process. Ind. Eng. Chem. Res. 36: 5170– 5174. Ancheyta, J., Rodríguez, M.A., Sánchez, S. 2005. Kinetic modeling of hydrocracking of heavy oil fractions: a review. Catal. Today. 109: 76– 92. Angeles, M.J., Leyva, C., Ancheyta, J., Ramírez, S. 2014. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst. Catal. Today. 220–222: 274– 294. Arrhenius, S. 1889. Űber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4: 226– 248. Avery, H.E. 1983. Basic reaction kinetics and mechanisms. MacMillan, London. Bacaud, R., Pessayre, S., Vrinat, M. 2002. Cinética de reacciones de hidrodesulfuración. XVII Simposio Iberoam. Catal., Isla de Margarita, Venezuela, September. Bagajewicz, M.J., Cabrera, E. 2003. Data reconciliation in gas pipeline systems. Ind. Eng. Chem. Res. 42: 5596– 5606. Basak, K., Abhilash, K.S., Ganguly, S., Saraf, D.N. 2002. On-line optimization of a crude distillation unit with constraints on product properties. Ind. Eng. Chem. Res. 41: 1557– 1568. Blanding, F.H. 1953. Reaction rates in catalytic cracking of petroleum. Ind. Eng. Chem. 45: 1186– 1197. Buchaly, C., Kreis, P., Gorak, A. 2012. n-Propyl propionate synthesis via catalytic distillation-experimental investigation in pilot-scale. Ind. Eng. Chem. Res. 51: 891– 899. Butt, J.B. 1980. Reaction kinetics and reactor design. Prentice-Hall, Englewood Cliffs, NJ. Callejas, M.A., Martínez, M.T. 1999. Hydrocracking of a Maya residue: kinetics and product yield distributions. Ind. Eng. Chem. Res. 38: 3285– 3289. Chapra, S.C., Canale, R.P. 1990. Numerical methods for engineers, 2nd ed. McGraw-Hill Education, Columbus, OH. Chen, N.H., Aris, R. 1992. Determination of Arrhenius constants by linear and nonlinear fitting. AIChE J. 38: 626– 628. Chopey, N.P. 1994. Handbook of chemical engineering calculations, 2nd ed. McGraw-Hill, New York. Christensen, H.N., Palmer, G.A. 1980. Enzyme kinetics. W. B. Saunders, Philadelphia. Corella, J., Frances, E. 1991. Fluid catalytic cracking II. ACS Symposium Series 452: 165– 182. De Donder, T. 1920. Leçons de thermodynamique et de chimie-physique. Gauthier-Villus, Paris. Drapper, N.R., Smith, H. 1981. Applied regression analysis. John Wiley & Sons, Inc., New York. Eadie, G.S. 1942. The inhibition of cholinesterase by physostigmine and prostigmine. J. Biol. Chem. 146: 85– 93. Feng, W., Vynckier, E., Froment, G.F. 1993. Single event kinetics of catalytic cracking. Ind. Eng. Chem. Res. 32: 2997– 3005. Fogler, H.S. 1992. Elements of chemical reaction engineering, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. Freitez, J., Peraza, A., Vargas, R., Verruschi, E. 2005. Estudio sobre la estimación de parámetros cinéticos en el proceso de hidrodesulfuración del gasóleo. Cong. Interam. Ing. Quim., Lima, Perú. Froment, G.F., Bischoff, K.B., De Wilde, J. 2010. Chemical reactor analysis and design, 3rd ed. John Wiley & Sons, Inc., New York. Hari, C., Balaraman, K.S., Balakrishnan, A.R. 1995. Fluid catalytic cracking: selectivity and product yield patterns. Chem. Eng. Technol. 18: 364– 369. Helfferich, F.G. 2003. Kinetics of homogeneous multistep reactions, 2nd ed. Elsevier Science, Amsterdam. Henri, V. 1902. Théorie générale de l'action de quelques diastases. C. R. Acad. Sci. Paris 135: 916– 919. Hill, C.G. 1977. An introduction to chemical engineering kinetics and reactor design. John Wiley & Sons, Inc., New York. Himmelblau, D.M. 1970. Process analysis by statistical methods. John Wiley & Sons, Inc., New York. Hinshelwood, C.H., Askey, P.S. 1927. Homogeneous reactions involving complex molecules: the kinetics of the decomposition of gaseous dimethyl ether. Proc. Roy. Soc. A115: 215– 226. Holland, C.D., Anthony, R.G. 1979. Fundamentals of chemical reaction engineering. Prentice-Hall, Englewood Cliffs, NJ. Hu, M., Shao, H. 2006. Theory analysis of nonlinear data reconciliation and application to a coking plant. Ind. Eng. Chem. Res. 45: 8973– 8984. Kilanowski, D.R., Gates, B.C. 1980. Kinetics of hydrodesulfurization of benzothiophene catalyzed by sulfided Co-Mo/Al2O3 . J. Catal. 62: 70– 78. Kistrakowsky, G.B., Lacker, J.R. 1936. The kinetics of some gaseous diels-alder reactions. J. Am. Chem. Soc. 58: 123– 133. Krambeck, F.J. 1991. An industrial viewpoint on lumping: kinetics and thermodynamic lumping of multicomponent mixtures. Elsevier Science, Amsterdam. Lee, L.S., Chen, Y.W., Huang, T.N., Pan, W.Y. 1989. Four-lump kinetic model for fluid catalytic cracking process. Can. J. Chem. Eng. 67: 615– 619. Levenspiel, O. 1972. Chemical reaction engineering, 2nd ed. John Wiley & Sons, Inc., New York. Levenspiel, O. 1979. The chemical reactor omnibook. Oregon State University Press. Corvallis. Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658– 666. Maronna, R., Arcas, J. 2009. Data reconciliation and gross error diagnosis based on regression. Comp. Chem. Eng. 33: 65– 71. Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11: 431– 441. Matsumura, A., Kondo, T., Sato, S., Saito, I., De Souza, W. 2005. Hydrocracking Brazilian Marlim vacuum residue with natural limonite. Part 1: catalytic activity of natural limonite. Fuel. 84: 411– 416. Miao, Y., Su, H., Xu, O., Chu, J. 2009. Support vector regression approach for simultaneous data reconciliation and gross error or outlier detection. Ind. Eng. Chem. Res. 48: 10903– 10911. Michaelis, L., Menten, M.L. 1913. Die Kinetik der Invertinwirkung. Biochem Z. 49: 333– 369. Nguyen, T.S., Tayakout-Fayolle, M., Ropars, M., Geantet, C. 2013. Hydroconversion of an atmospheric residue with a dispersed catalyst in a batch reactor: kinetic modeling including vapor-liquid equilibrium. Chem. Eng. Sci. 94: 214– 223. Oliveira, C.E., Aguiar, P.F. 2009. Data reconciliation in the natural gas industry: analytical applications. Energy Fuels. 23: 3658– 3664. Perego, C., Peratello, S. 1999. Experimental methods in catalytic kinetics. Catal. Today. 52: 133– 145. Phillips, G.A., Harrison, D.P. 1993. Gross error detection and data reconciliation in experimental kinetics. Ind. Eng. Chem. Res. 32: 2530– 2536. Pinheiro, I.C.C., Fernandes, J.L., Domingues, L., Chambeln, A.J.S., Gracia, I., Oliveira, N.M.C., Cerqueira, H.S., Ribeiro, F.R. 2012. Fluid catalytic cracking (FCC) process modeling. Ind. Eng. Chem. Res. 51: 1– 29. Pitault, I. Fongarland, P., Mitrovic, M. 2004. Choice of laboratory scale reactors for HDT kinetics studies or catalyst tests. Catal. Today. 98: 31– 42. Quastel, J.H., Woolf, B. 1926. The equilibrium between l-aspartic acid, fumaric acid and ammonia in presence of resting bacteria. Biochem. J. 20: 545– 555. Reklaitis, G.V., Ravindran, A., Ragsdell, K. 1983. Engineering optimization methods and applications. John Wiley & Sons, Inc., New York. Rezaei, H., Liu, X., Ardakani, S.J., Smith, K.J., Bricker, M. 2010. Astudy of Cold Lake vacuum residue hydroconversion in batch and semi-batch reactors using dispersed catalysts. Catal. Today. 150: 244– 254. Rice, N. 1997. The temperature scanning reactor II: theory of operation. Catal. Today. 36: 191– 207. Rubinstein, R. 1981. Simulation and the Monte Carlo method. John Wiley & Sons, Inc., New York. Sadeghbeigi, R. 1995. Fluid catalytic cracking handbook. Houston, TX: Gulf Publishing. Seferlis, P., Hrymak, A.N. 1996. Sensitivity analysis for chemical process optimization. Comp. Chem. Eng. 20: 1177– 1200. Smaïli, F., Vassiliadis, V.S., Wilson, D.I. 2001. Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning. Energy Fuels. 15: 1038– 1056. Smith, J.M., Van Ness, H.C., Abbott, M.M. 1980. Introduction to chemical engineering thermodynamics. McGraw-Hill, New York. Tong, H., Crowe, C.M. 1995. Detection of gross errors in data reconciliation by principal component analysis. AIChE J. 41: 1712– 1722. Tukey, J.W. 1977. Exploratory data analysis. Addison-Wesley, Reading, MA. Van Landeghem, F., Nevicato, D., Pitault, I., Forissier, M., Turlier, P., Derouin, C., Bernard, J.R. 1996. Fluid catalytic cracking: modelling of an industrial riser. Appl. Cat. A. 138: 381– 405. Varma, A., Morbidelli, M., Wu, H. 1999. Parametric sensitivity in chemical systems. Cambridge University Press, Cambridge. Vasebi, A., Poulin, E., Hodouin, D. 2011. Observers for mass and energy balance calculation in metallurgical plants. Proceedings of the 18th IFAC World Congress, Milan, Italy, 9935– 9940. Wallenstein, D., Alkemade, U. 1996. Modelling of selectivity data obtained from microactivity testing of FCC catalysts. Appl. Catal. A 137: 37– 54. Wang, D., Romagnoli, J.A. 2003. A framework for robust data reconciliation based on a generalized objective function. Ind. Eng. Chem. Res. 42: 3075– 3084. Wang, F., Jia, S., Zheng, X., Yue, J. 2004. An improved MT–NT method for gross error detection and data reconciliation. Comp. Chem. Eng. 28: 2189– 2192. Wang, Y. 1970. Catalytic cracking of gas oils. PhD dissertation, Chemical and Fuels Engineering Department, University of Utah. Weekman, V.W. 1968. A model of catalytic cracking conversion in fixed, moving and fluid-bed reactors. Ind. Eng. Chem. Proc. Des. Dev. 7: 90– 95. Weekman, V.W. 1969. Kinetics and dynamics of catalytic cracking selectivity in fixed beds. Ind. Eng. Chem. Proc. Des. Dev. 8: 385– 391. Wen Li, H., Andersen, T.R., Gani, R., Jørgensen, S.B. 2006. Operating pressure sensitivity of distillations control structure consequences. Ind. Eng. Chem. Res. 45: 8310– 8318. Wojciechowski, B. 1997. The temperature scanning reactor I: reactor types and modes of operation. Catal. Today. 36: 167– 190. Worsfold, D.J., Bywater, S. 1960. Anionic polymerization of styrene. Can. J. Chem. 38(10): 1891– 1900. Wynkoop, R., Wilhelm, R.H. 1950. Kinetics in tubular reactor, hydrogenation of ethylene over copper-magnesia catalyst. Chem. Eng. Progr. 46: 300– 310. Zhang, Z., Shao, Z., Chen, X., Wang, K., Qian, J. 2010. Quasi-weighted least squares estimator for data reconciliation. Comp. Chem. Eng. 34: 154– 162. Chemical Reaction Kinetics: Concepts, Methods and Case Studies ReferencesRelatedInformation" @default.
- W4247190615 created "2022-05-12" @default.
- W4247190615 date "2017-06-09" @default.
- W4247190615 modified "2023-09-23" @default.
- W4247190615 title "References" @default.
- W4247190615 cites W1482962472 @default.
- W4247190615 cites W1577450737 @default.
- W4247190615 cites W1883450768 @default.
- W4247190615 cites W1965053228 @default.
- W4247190615 cites W1971052017 @default.
- W4247190615 cites W1974244457 @default.
- W4247190615 cites W1975934882 @default.
- W4247190615 cites W1981373497 @default.
- W4247190615 cites W1982543065 @default.
- W4247190615 cites W1983019477 @default.
- W4247190615 cites W1985164451 @default.
- W4247190615 cites W1991679752 @default.
- W4247190615 cites W1994006472 @default.
- W4247190615 cites W1994097528 @default.
- W4247190615 cites W1996073420 @default.
- W4247190615 cites W2007051824 @default.
- W4247190615 cites W2010521943 @default.
- W4247190615 cites W2012634933 @default.
- W4247190615 cites W2014220410 @default.
- W4247190615 cites W2019479856 @default.
- W4247190615 cites W2032943205 @default.
- W4247190615 cites W2038103930 @default.
- W4247190615 cites W2038734550 @default.
- W4247190615 cites W2038747476 @default.
- W4247190615 cites W2040118871 @default.
- W4247190615 cites W2054979333 @default.
- W4247190615 cites W2061649156 @default.
- W4247190615 cites W2066731844 @default.
- W4247190615 cites W2067682298 @default.
- W4247190615 cites W2072725528 @default.
- W4247190615 cites W2073893593 @default.
- W4247190615 cites W2075200559 @default.
- W4247190615 cites W2083322858 @default.
- W4247190615 cites W2083889802 @default.
- W4247190615 cites W2084302303 @default.
- W4247190615 cites W2084434329 @default.
- W4247190615 cites W2087070363 @default.
- W4247190615 cites W2088615565 @default.
- W4247190615 cites W2091989602 @default.
- W4247190615 cites W2094515414 @default.
- W4247190615 cites W2094885737 @default.
- W4247190615 cites W2095389499 @default.
- W4247190615 cites W2320012511 @default.
- W4247190615 cites W2332978392 @default.
- W4247190615 cites W2483500811 @default.
- W4247190615 cites W2498098638 @default.
- W4247190615 cites W2951758848 @default.
- W4247190615 cites W4233358567 @default.
- W4247190615 cites W1788378 @default.
- W4247190615 cites W2009491607 @default.
- W4247190615 cites W2063381327 @default.
- W4247190615 doi "https://doi.org/10.1002/9781119226666.refs" @default.
- W4247190615 hasPublicationYear "2017" @default.
- W4247190615 type Work @default.
- W4247190615 citedByCount "0" @default.
- W4247190615 crossrefType "other" @default.
- W4247190615 hasConcept C41008148 @default.
- W4247190615 hasConceptScore W4247190615C41008148 @default.
- W4247190615 hasLocation W42471906151 @default.
- W4247190615 hasOpenAccess W4247190615 @default.
- W4247190615 hasPrimaryLocation W42471906151 @default.
- W4247190615 hasRelatedWork W1596801655 @default.
- W4247190615 hasRelatedWork W2130043461 @default.
- W4247190615 hasRelatedWork W2350741829 @default.
- W4247190615 hasRelatedWork W2358668433 @default.
- W4247190615 hasRelatedWork W2376932109 @default.
- W4247190615 hasRelatedWork W2382290278 @default.
- W4247190615 hasRelatedWork W2390279801 @default.
- W4247190615 hasRelatedWork W2748952813 @default.
- W4247190615 hasRelatedWork W2899084033 @default.
- W4247190615 hasRelatedWork W2530322880 @default.
- W4247190615 isParatext "false" @default.
- W4247190615 isRetracted "false" @default.
- W4247190615 workType "other" @default.