Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247234591> ?p ?o ?g. }
- W4247234591 abstract "Abstract Man‐made vitreous fibers (MMVF) is a generic descriptor for a group of fibrous materials made from melting inorganic substances such as sand, clay, glass, or slag. Synthetic vitreous fibers (SVF) or man‐made synthetic vitreous fibers (MSVF) may also be used to describe these groups of materials. These terms have generally replaced earlier use of man‐made mineral fibers (MMMF). MMVF are further classified by the raw material used in production; major categories include glass fibers (glass wool or continuous filament), mineral wool (rock or slag), and refractory ceramic fibers. The latter two types are covered in this chapter; glass fibers are described in Chapter. Within each category, a variety of commercial products have been produced and may be identified by manufacturer and product name and number. Each has a slightly different formulation and characteristics; therefore it is important where possible to identify the particular product number. Dimension, durability, and dose delivered to the target organ are critical factors in the toxicity of MMVF. MMVF are characterized by length (L) and diameter (D). The arithmetic mean or median of the observed distribution of lengths and diameters may be given as the count mean or median diameter (CMD) or length (CML). If the observed values are transformed by taking the natural logarithm of the measured parameters, the geometric mean (GM) of each dimension may be given with a geometric standard deviation (GSD). The size determinations may be made by either scanning (SEM) or transmission (TEM) electron microscopy. TEM has the lower limits of detection by which investigators can characterize fibers with diameters in the nanometer range. Dose by some routes of administration may be further described by the mass of material, for example, in implantation or single bolus injection studies. For inhalation studies, GM and GSD length and diameter are usually listed for the exposure aerosol, and often the number of fibers within specific size ranges are listed. Following inhalation, fibers may be deposited on surfaces within the respiratory tract or exhaled. For the fibers that are deposited, the site of deposition (dose) depends upon the characteristics of the fiber and results from one of five mechanisms: impaction, interception, sedimentation, electrostatic precipitation, or diffusion. The majority of the deposition of MMVF is probably governed by the first three mechanisms. Impaction and interception occur when the fiber is removed from the airstream by physically contacting the surface of the airway or a bifurcation. Sedimentation occurs in the lower airways, where the velocity of the fiber becomes low enough for it to settle on the airway surface. Electrostatic precipitation results when the fiber carries a charge opposite to that of the airway surface; for mineral wool fibers, no reports have been found on surface charge measurements. Deposition due to diffusion requires that the air molecules collide with the fiber, resulting in movement toward the surface. This mechanism could contribute to deposition of very thin fibers, e.g., those with diameters substantially less than one‐half micron, but few of them are expected in the work environment. The clearance mechanism of the deposited fibers depends upon the characteristics of the fiber and the site of deposition. Fibers deposited in the tracheobronchial region are cleared with the mucous by the cilia and swallowed. This process is completed in a matter of days, during which little change in fiber dimensions would be anticipated. Fibers deposited lower in the respiratory tract are cleared more slowly. Here the fibers are cleared by translocation to another area of the lung or dissolve; translocation may be facilitated by partial dissolution of the fiber or breakage into particles of shorter length. When fibers recovered from the lung or other tissue are characterized by dimensions, comparison with the parent material provides information on deposition and distribution. Solubility has been investigated as an indicator of durability. The interpretation of short‐term bioassay results is still under study. Bernstein et al. suggested that the results of dissolution at neutral pH are correlated with in vivo biopersistence. Others report that the dissolution rates of MMVF that have high aluminum content are much greater in acidic environments. Evidence from animal studies shows that the macrophages may interact with long fibers and that multiple macrophages attach to a single fiber which can lead to dissolution." @default.
- W4247234591 created "2022-05-12" @default.
- W4247234591 creator A5044499654 @default.
- W4247234591 date "2001-04-16" @default.
- W4247234591 modified "2023-10-09" @default.
- W4247234591 title "Rock Wool and Refractory Ceramic Fibers" @default.
- W4247234591 cites W1630746469 @default.
- W4247234591 cites W1963723448 @default.
- W4247234591 cites W1970812121 @default.
- W4247234591 cites W1978590809 @default.
- W4247234591 cites W1982546106 @default.
- W4247234591 cites W1983756186 @default.
- W4247234591 cites W1988934940 @default.
- W4247234591 cites W1989748214 @default.
- W4247234591 cites W1994797944 @default.
- W4247234591 cites W1999453863 @default.
- W4247234591 cites W2001754229 @default.
- W4247234591 cites W2002953586 @default.
- W4247234591 cites W2003751082 @default.
- W4247234591 cites W2005435066 @default.
- W4247234591 cites W2006888572 @default.
- W4247234591 cites W2007839613 @default.
- W4247234591 cites W2008000139 @default.
- W4247234591 cites W2011034550 @default.
- W4247234591 cites W2017468051 @default.
- W4247234591 cites W2023771305 @default.
- W4247234591 cites W2029206503 @default.
- W4247234591 cites W2029671724 @default.
- W4247234591 cites W2033821823 @default.
- W4247234591 cites W2035400474 @default.
- W4247234591 cites W2040206934 @default.
- W4247234591 cites W2044909650 @default.
- W4247234591 cites W2045925429 @default.
- W4247234591 cites W2047148547 @default.
- W4247234591 cites W2047653832 @default.
- W4247234591 cites W2051650025 @default.
- W4247234591 cites W2052194693 @default.
- W4247234591 cites W2063908366 @default.
- W4247234591 cites W2064166295 @default.
- W4247234591 cites W2067268977 @default.
- W4247234591 cites W2068674233 @default.
- W4247234591 cites W2069764702 @default.
- W4247234591 cites W2071605124 @default.
- W4247234591 cites W2071905835 @default.
- W4247234591 cites W2078958659 @default.
- W4247234591 cites W2083157441 @default.
- W4247234591 cites W2087403496 @default.
- W4247234591 cites W2093815408 @default.
- W4247234591 cites W2097900817 @default.
- W4247234591 cites W2110856193 @default.
- W4247234591 cites W2114915956 @default.
- W4247234591 cites W2118522051 @default.
- W4247234591 cites W2123017542 @default.
- W4247234591 cites W2135019883 @default.
- W4247234591 cites W2137161956 @default.
- W4247234591 cites W2148376417 @default.
- W4247234591 cites W2150743742 @default.
- W4247234591 cites W2151951319 @default.
- W4247234591 cites W2152485117 @default.
- W4247234591 cites W2155715915 @default.
- W4247234591 cites W2166835612 @default.
- W4247234591 cites W2177864763 @default.
- W4247234591 cites W2283402427 @default.
- W4247234591 cites W2314898080 @default.
- W4247234591 cites W2318154582 @default.
- W4247234591 cites W2321088841 @default.
- W4247234591 cites W2322264235 @default.
- W4247234591 cites W2415244592 @default.
- W4247234591 doi "https://doi.org/10.1002/0471435139.tox014" @default.
- W4247234591 hasPublicationYear "2001" @default.
- W4247234591 type Work @default.
- W4247234591 citedByCount "0" @default.
- W4247234591 crossrefType "other" @default.
- W4247234591 hasAuthorship W4247234591A5044499654 @default.
- W4247234591 hasConcept C134132462 @default.
- W4247234591 hasConcept C159985019 @default.
- W4247234591 hasConcept C177229083 @default.
- W4247234591 hasConcept C185592680 @default.
- W4247234591 hasConcept C192562407 @default.
- W4247234591 hasConcept C199289684 @default.
- W4247234591 hasConcept C2777800518 @default.
- W4247234591 hasConcept C2779151659 @default.
- W4247234591 hasConcept C2779227376 @default.
- W4247234591 hasConceptScore W4247234591C134132462 @default.
- W4247234591 hasConceptScore W4247234591C159985019 @default.
- W4247234591 hasConceptScore W4247234591C177229083 @default.
- W4247234591 hasConceptScore W4247234591C185592680 @default.
- W4247234591 hasConceptScore W4247234591C192562407 @default.
- W4247234591 hasConceptScore W4247234591C199289684 @default.
- W4247234591 hasConceptScore W4247234591C2777800518 @default.
- W4247234591 hasConceptScore W4247234591C2779151659 @default.
- W4247234591 hasConceptScore W4247234591C2779227376 @default.
- W4247234591 hasLocation W42472345911 @default.
- W4247234591 hasOpenAccess W4247234591 @default.
- W4247234591 hasPrimaryLocation W42472345911 @default.
- W4247234591 hasRelatedWork W2062444934 @default.
- W4247234591 hasRelatedWork W2067986832 @default.
- W4247234591 hasRelatedWork W2127268032 @default.
- W4247234591 hasRelatedWork W2136044291 @default.
- W4247234591 hasRelatedWork W2274184364 @default.